
Code Insight 2020 R4
Plugins Guide

Legal Information

Copyright Notice
Copyright © 2020 Flexera Software

This publication contains proprietary and confidential information and creative works owned by Flexera Software and its licensors, if any. Any use,
copying, publication, distribution, display, modification, or transmission of such publication in whole or in part in any form or by any means without the
prior express written permission of Flexera Software is strictly prohibited. Except where expressly provided by Flexera Software in writing, possession of
this publication shall not be construed to confer any license or rights under any Flexera Software intellectual property rights, whether by estoppel,
implication, or otherwise.

All copies of the technology and related information, if allowed by Flexera Software, must display this notice of copyright and ownership in full.

Code Insight incorporates software developed by others and redistributed according to license agreements. Copyright notices and licenses for these
external libraries are provided in a supplementary document that accompanies this one.

Intellectual Property
For a list of trademarks and patents that are owned by Flexera Software, see https://www.flexera.com/legal/intellectual-property.html. All other brand
and product names mentioned in Flexera Software products, product documentation, and marketing materials are the trademarks and registered
trademarks of their respective owners.

Restricted Rights Legend
The Software is commercial computer software. If the user or licensee of the Software is an agency, department, or other entity of the United States
Government, the use, duplication, reproduction, release, modification, disclosure, or transfer of the Software, or any related documentation of any kind,
including technical data and manuals, is restricted by a license agreement or by the terms of this Agreement in accordance with Federal Acquisition
Regulation 12.212 for civilian purposes and Defense Federal Acquisition Regulation Supplement 227.7202 for military purposes. The Software was
developed fully at private expense. All other use is prohibited.

Book Name: Code Insight 2020 R4 Plugins Guide

Part Number: FNCI-2020R4-PG00

Product Release Date: December 2020

https://www.flexera.com/legal/intellectual-property.html

Contents
1 Code Insight 2020 R4 Plugins Guide . 7
About Scan-Agent Plugins. 7

Contents of this Book . 8

Product Support Resources . 8

Contact Us . 9

2 Installing and Configuring Standard Plugins. 11
About Scan-Agent Plugins. 12

Overview of Available Plugins . 12
Important: Plugin Upgrade to Version 2.0 in Code Insight 2020 R3 . 13

Preparing to Use the Plugins . 13

Providing an Authorization Token. 14

Downloading Plugins. 14

Plugins for Integrated Development Environments (IDEs) . 15
Eclipse Plugin . 15

Prerequisites for the Eclipse Plugin . 15
Installing the Eclipse Plugin . 15
Configuring the Eclipse Plugin. 18
Running a Scan within Your Eclipse Environment . 20
Uninstalling the Eclipse Plugin . 20

Visual Studio Plugin . 21
Prerequisites for the Visual Studio Plugin . 21
Installing the Visual Studio Plugin . 21
Configuring the Visual Studio Plugin . 22

Configuration Using Visual Studio IDE . 23
Configuration Using MSBuild . 25

Executing a Scan. 27
Scan Execution Using Visual Studio IDE. 27
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 3

Contents
Scan Execution Using MSBuild. 28
Disabling or Uninstalling the Visual Studio Plugin . 29

Plugins for Continuous Integration (CI) Tools . 30
Azure DevOps Extension . 30

Prerequisites for the Azure DevOps Extension. 31
Installing the Azure DevOps Extension . 31
Adding a Scan Task to Your Azure DevOps Agent Job . 31

Bamboo Plugin. 34
Prerequisites for the Bamboo Plugin. 34
Installing and Configuring the Bamboo Plugin . 34

GitLab Plugin . 36
Prerequisites for the GitLab Plugin. 36
Installing the Generic Scan Agent on GitLab Runner . 37
Configuring the CI/CD Pipeline to Run a Scan . 37
Executing the Build . 38

Jenkins Plugin . 38
Prerequisites for the Jenkins Plugin . 39
Setting Heap Size for the Jenkins Plugin . 39
Setting Up the Code Insight Jenkins Plugin . 40
Support for the Jenkins Pipeline . 41

Providing the Pipeline Script for the Scan Step . 41
Pipeline Code Examples for Running the Scan. 41

Scan Scheduler Plugin for Jenkins . 43
TeamCity Plugin. 44

Prerequisites for TeamCity Plugin . 44
Installing the Generic Scan-Agent on the Team City Build Agent . 44
Configuring a Build to Run a Code Insight Scan . 45
Executing the Build . 46

Plugins for Package Managers and Build Tools . 46
Apache Ant Plugin . 47

Prerequisites for the Apache Ant Plugin . 47
Configuring the Apache Ant Plugin. 47
Executing the Scan. 48

Gradle Plugin . 49
Prerequisites for the Gradle Plugin . 50
Installing and Configuring the Gradle Plugin . 50

Maven Plugin . 52
More About the Maven Plugin . 52
Prerequisites for the Maven Plugin. 52
Installing and Configuring the Maven Plugin . 52
Cleaning the Application Project . 55
Running the Maven Goal for the Scan . 55

Plugins for Binary Repositories . 55
JFrog Artifactory Plugin . 55

Prerequisites for the Artifactory Plugin . 56
Installing the Artifactory Plugin . 56
4 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Contents
Scanning an Artifactory Repository Using a Cron Job . 57
Scanning an Artifactory Repository Using REST API. 57

Requirements When Using REST API to Scan Artifactory Repositories . 57
Scanning All Artifactory Repositories . 58
Scanning a Specific Artifactory Repository . 58
Reloading the Artifactory Plugin . 58

Scan Results. 59

Plugins for Container Platforms . 59
Docker Images Plugin . 59

Prerequisites for the Docker Images Plugin . 59
Installing the Docker Images Plugin. 60
Launching the Docker Images Plugin . 61

Generic Scan-Agent Plugin . 62
Prerequisites for the Generic Scan-Agent Plugin . 62
Running the Generic Scan-Agent Plugin. 62
Enabling the Generic Scan-Agent Plugin to Detect Transitive Dependencies . 64

Note About Rescans Performed by 2.0 Plugins . 64

3 Developing Custom Plugins . 67
Scan Agent Framework . 67

Features Provided by the Framework. 68
Available Classes and Methods in the Framework. 68
Property Settings. 69

Downloading the Scan Agent Toolkit . 71

Contents of the Scan Agent Toolkit . 71

Writing a Custom Scan-Agent Plugin. 71

Deploying a Custom Scan-Agent Plugin . 72
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 5

Contents
6 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

1

Code Insight 2020 R4 Plugins Guide
Code Insight empowers organizations to take control of and manage their use of open source software (OSS) and other
third-party components. It helps development, legal, and security teams use automation to create a formal OSS strategy
that balances business benefits and risk management.

The Code Insight Plugins Guide describes how to install and configure a Code Insight standard scan-agent plugin (or
develop your own custom plugin) directly in your development environment to scan your product source files and post-
build artifacts for OSS and third-party components.

This chapter covers the following information:

• About Scan-Agent Plugins

• Contents of this Book

• Product Support Resources

• Contact Us

About Scan-Agent Plugins
Code Insight supports a scan-agent plugin, which is installed directly in your development environment to perform scans
on your product’s source files and built artifacts as part of your software development process. This type of scan is an
alternative to the standard scan, which is performed source codebase files that are uploaded to Code Insight. (Scans on
codebases uploaded to the Scan Server are described in Code Insight User Guide.)

The scan-agent plugin is configured to scan a specific set of files within the context of an Engineering application (such as
an IDE, artifact repository, CI tool, a build, testing, or installation tool, or a source-management application). Once
configured, the plugin can be invoked to run a scan as part of the build process. The scan results, sent back to Code Insight,
include scanned-file information and published inventory awaiting review, management, and remediation. Just as with
published inventory produced by the Code Insight Scan Server, published inventory produced by a scan-agent plugin can
be automatically reviewed by license or security policies during the scan. Inventory not reviewed by policy can be reviewed
manually by legal or security experts. Security alerts with corresponding email notifications are automatically generated
for any inventory item with new security vulnerabilities.
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 7

Chapter 1 Code Insight 2020 R4 Plugins Guide
Contents of this Book
Code Insight offers a set of standard scan-agent plugins that are pre-built and ready for immediate deployment. It also
provides a generic scan-agent plugin (also pre-built) that can be used as a standalone scan-agent to scan arbitrary file
systems or integrated with certain Engineering applications for automatic code scanning.

Additionally, Code Insight offers a Scan Agent toolkit that enables you to create a custom scan-agent plugin that integrates
with your development ecosystem.

Contents of this Book
The Code Insight Plugins Guide includes the following chapters.

Product Support Resources
The following resources are available to assist you with using this product:

• Revenera Product Documentation

• Revenera Community

• Revenera Learning Center

• Revenera Support

Revenera Product Documentation

You can find documentation for all Revenera products on the Revenera Product Documentation site:

https://docs.revenera.com

Revenera Community

On the Revenera Community site, you can quickly find answers to your questions by searching content from other
customers, product experts, and thought leaders. You can also post questions on discussion forums for experts to answer.
For each of Revenera’s product solutions, you can access forums, blog posts, and knowledge base articles.

https://community.revenera.com

Table 1-1 • Code Insight Plugins Guide

Chapter Content

Installing and Configuring Standard
Plugins

Describes how to install and configure the Code Insight standard scan-
agent plugins.

Developing Custom Plugins Describes how to use the Scan Agent toolkit to develop custom scan-
agent plugins.
8 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

https://docs.revenera.com
https://docs.revenera.com
https://community.revenera.com
https://community.revenera.com

Chapter 1 Code Insight 2020 R4 Plugins Guide
Contact Us
Revenera Learning Center

The Revenera Learning Center offers free, self-guided, online videos to help you quickly get the most out of your Revenera
products. You can find a complete list of these training videos on the Learning Center site:

https://learning.revenera.com

Revenera Support

For customers who have purchased a maintenance contract for their product(s), you can submit a support case or check
the status of an existing case by making selections on the Get Support menu of the Revenera Community.

https://community.revenera.com

Contact Us
Revenera is headquartered in Itasca, Illinois, and has offices worldwide. To contact us or to learn more about our products,
visit our website at:

http://www.revenera.com

You can also follow us on social media:

• Twitter

• Facebook

• LinkedIn

• YouTube

• Instagram
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 9

https://learning.revenera.com
https://community.revenera.com
https://twitter.com/getrevenera
https://learning.revenera.com
https://www.facebook.com/flexera/
https://www.linkedin.com/company/revenera/
https://www.youtube.com/c/GetRevenera
https://www.instagram.com/weareflexera/
http://www.revenera.com

Chapter 1 Code Insight 2020 R4 Plugins Guide
Contact Us
10 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

2

Installing and Configuring Standard

Plugins
Code Insight supports scan-agent plugins, which are installed directly in development environments to perform scans on
pre-build source files or post-build artifacts as part of the software development process. These remote plugin scans
provide an alternative to scans performed on codebases that are uploaded to the Code Insight, as described in the Code
Insight User Guide.

The following sections discuss the download, installation, and configuration of the plugins available for various types of
build environments:

• About Scan-Agent Plugins

• Overview of Available Plugins

• Preparing to Use the Plugins

• Providing an Authorization Token

• Downloading Plugins

• Plugins for Integrated Development Environments (IDEs)

• Plugins for Continuous Integration (CI) Tools

• Plugins for Package Managers and Build Tools

• Plugins for Binary Repositories

• Plugins for Container Platforms

• Generic Scan-Agent Plugin
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 11

Chapter 2 Installing and Configuring Standard Plugins
About Scan-Agent Plugins
About Scan-Agent Plugins
Once a Code Insight scan-agent plugin is installed and the scan is configured as part of your build process, the scan agent,
when run, collects and sends the scan results back to Code Insight server codebase information to review and as published
inventory awaiting review, management, and remediation through Code Insight user interface. As with published
inventory generated by the Code Insight scan server, published inventory generated by a scan-agent plugin can be
automatically reviewed by license or security policies as part of the scan and, for inventory not reviewed by policy, can be
reviewed manually by legal or security experts. Security alerts with corresponding email notifications will be generated for
any inventory item with new security vulnerabilities.

Overview of Available Plugins
Code Insight provides the following plugins that enable data (codebase files) on remote servers to be scanned:

Additionally, a generic scan-agent plugin is available with Code Insight that enables you to scan arbitrary file systems of
your choice. It also easily integrates with certain Engineering systems, such as TeamCity and GitLab, to perform scans as
part of a build process or can serve as an example for developing your own scan-agent plugin (as described in the chapter
Developing Custom Plugins). All the scan-agent plugins send results to Code Insight for further review and action.

Table 2-1 • Overview of the Standard Plugins

Build Environment Code Insight Plugin Performs automated scanning of...

IDEs Eclipse Plugin An Eclipse workspace in the Eclipse IDE environment.

Visual Studio Plugin A Visual Studio solution.

CI Tools Azure DevOps
Extension

An Azure DevOps workspace as part of the build process.

Bamboo Plugin A Bamboo workspace as part of the build process (on Local Agents only)

GitLab Plugin GitLab projects as part of the build process.

Jenkins Plugin A Jenkins workspace as part of the build process.

A separate plugin is available (called the Scan Schedule Plugin) that enables you to
simply schedule the scan of a codebase residing on the Code Insight scan server via
the Jenkins scheduler.

TeamCity Plugin TeamCity projects as part of the build process.

Package Manager
and Build Tools

Apache Ant Plugin Apache Ant as part of the build process.

Gradle Plugin Gradle projects as part of the build process.

Maven Plugin Maven projects as part of the build process.

Binary Repositories JFrog Artifactory
Plugin

Artifactory repositories to identify non-compliant artifacts.

Container Platforms Docker Images
Plugin

Docker images on a Docker server.
12 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Preparing to Use the Plugins
Important: Plugin Upgrade to Version 2.0 in Code Insight
2020 R3

Code Insight scan-agent plugins were upgraded from version 1.x to 2.0 starting in the Code Insight 2020 R3 release.

The 1.x plugins require an inventory-only project on the Code Insight Core Server to which to send only the inventory
results from the remote scans. However, the 2.0 plugins, whose scans capture both inventory and codebase-file
information, send scan results to a new project type that is capable of managing the data from both server scans
(performed by the Scan Server) and remote scans. For information about this new project type, introduced in Code Insight
2020 R3, see “Legacy Projects” in the Code Insight User Guide.

Note that the configuration of all 2.0 plugins requires a new “alias” property to identify the scan agent to Code Insight. A
new “host” property might also be required for certain plugins (see Note About Rescans Performed by 2.0 Plugins for
details).

Code Insight continues to support existing inventory-only projects, enabling users to scan these projects using version 1.x
plugins installed from previous Code Insight releases. However, inventory-only projects will be deprecated in a future
release. If you want to manually migrate your inventory-only projects to the new project type, refer to the following
Knowledge Base article in the Revenera Community:

https://community.flexera.com/t5/FlexNet-Code-Insight-Customer/Code-Insight-2020-R3-Changes-to-Projects/ta-p/
160059

Plugins Not Yet Upgraded

In this release, the following scan-agent plugins have been not been upgraded. These 1.x plugins continue to require
inventory-only projects, sending only inventory information in the scan results.

• GitLab

• JFrog Artifactory

• TeamCity

As these scan-agent plugins are updated, you can retrieve the updated documentation from either the Revenera Product
Documentation site or the Flexera Product and Licensing Center.

Preparing to Use the Plugins
Before configuring and using the scan-agent plugins, complete the following tasks:

• Ensure that the Code Insight server is installed and running, as described in the Code Insight Installation &
Configuration Guide. (Take note of the server’s URL, as you will need this information to configure the plugin to access
the server.)

• Generate a JSON Web Token (JWT) for a user registered on the Code Insight server. See Providing an Authorization
Token for more information.

• Create a project on the Code Insight server. See “Creating a Project” in the Code Insight User Guide for details.
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 13

https://docs.revenera.com
https://docs.revenera.com
https://community.flexera.com/t5/FlexNet-Code-Insight-Customer/Code-Insight-2020-R3-Changes-to-Projects/ta-p/160059
https://community.flexera.com/t5/FlexNet-Code-Insight-Customer/Code-Insight-2020-R3-Changes-to-Projects/ta-p/160059

Chapter 2 Installing and Configuring Standard Plugins
Providing an Authorization Token
Providing an Authorization Token
Code Insight uses a JSON Web Token (JWT) to authorize user access to the Code Insight public REST interface. Several of
the scan-agent plugins make use of the REST APIs and thus require a JWT. For information about obtaining this
authorization token, see “Managing Authorization Tokens” in the “Using Code Insight” chapter in the Code Insight User
Guide.

Downloading Plugins
The scan-agent plugins are provided in a .zip file that is not included with the Code Insight installation. You can access the
plugins .zip file from the Revenera Community. The following procedure assumes you have a login and password to
access the Revenera Community.

Task To download the plugin zip file, do the following:

1. Access the Revenera Community site and sign in:

https://community.revenera.com

2. In Find My Product, click Code Insight.

3. Under Product Resources on the right, click Download Product and Licenses.

4. Once in the Product and License Center, navigate to Your Downloads and select FlexNet Code Insight. The
Download Packages page is displayed.

5. Select the version of Code Insight from the list. The Downloads page appears.

6. Select the Code Insight Plugins version, and download its associated CodeInsightversionPlugins.zip file.

7. When the download finishes, extract and copy the desired plugin subfolder to your build environment (or the location
that this document might specify for a particular plugin):

• For a standard scan-agent plugin (such as Ant, Artifactory, Bamboo, Docker, Gradle, Jenkins, Maven, and others),
extract the subfolder that identifies the plugin (such as code-insight-docker-images-plugin for the Docker
Images plugin).

• For the Code Insight generic scan-agent plugin (required for Team City or GitLab scans), extract the subfolder
code-insight-agent-sdk-generic-plugin. This plugin can also be used to scan arbitrary files or can serve as a
basis for developing custom scan-agent plugins.

Ensure that you copy the entire subfolder to your build location, so you have all necessary files to implement the
plugin.
14 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

https://community.revenera.com

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Integrated Development Environments (IDEs)
Plugins for Integrated Development Environments
(IDEs)

Currently, Code Insight support for scan integration with an integrated development environment (IDE) includes the
following:

• Eclipse Plugin

• Visual Studio Plugin

Eclipse Plugin
The Eclipse plugin enables development teams to perform Code Insight scans within their Eclipse IDE environment. The
scan results are automatically sent to the Code Insight server for inventory review, management, remediation, and
security-alerting through the Code Insight user interface.

To enable this functionality, you need to install the Eclipse plugin and configure it for your Eclipse project:

• Prerequisites for the Eclipse Plugin

• Installing the Eclipse Plugin

• Configuring the Eclipse Plugin

• Running a Scan within Your Eclipse Environment

• Uninstalling the Eclipse Plugin

Prerequisites for the Eclipse Plugin
Before you can install and configure the Code Insight plugin for Eclipse, perform the required tasks described in Preparing
to Use the Plugins for details.

Installing the Eclipse Plugin
Once you have ensured that the prerequisites are met, use this procedure to install the Eclipse plugin in your Eclipse
environment.

Task To install the Eclipse plugin, do the following:

1. Ensure that you have extracted the code-insight-eclipse-scan folder from the CodeInsightversionPlugins.zip
file and have placed it in a location accessible to your environment. For more information, see Downloading Plugins.

2. Open Eclipse, and select Help | Install New Software.
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 15

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Integrated Development Environments (IDEs)
3. On the Available Software window, click the Add to display the Add Repository popup:

4. On the popup, click Archive.

5. Browse to the code-insight-eclipse-scan/code-insight-eclipse-scan.zip file, select it, and click Open. Then
click OK.

The Available Software window is redisplayed, showing the plugin information you selected.
16 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Integrated Development Environments (IDEs)
6. Click the checkbox next to the Code Insight Scan Plugin entry, and click Next. The Install Details window is
displayed, listing the plugin you are preparing to install.
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 17

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Integrated Development Environments (IDEs)
7. Click Next to display the Review Licenses window.

8. Accept the license agreement terms, and click Finish.

9. When the installation is completed, restart Eclipse.

Configuring the Eclipse Plugin
Once you have installed the Eclipse plugin and have restarted Eclipse, follow this procedure to configure the plugin to
perform codebase scans on your project in Eclipse.

Task To configure the Eclipse plugin, do the following:

1. In Eclipse, select the project whose codebase you want to scan, right-click the project entry, and select Properties.

2. On the Properties window for your project, select Code Insight in the left pane to display the properties needed for a
Code Insight scan.
18 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Integrated Development Environments (IDEs)
3. In the Properties window for your project, provide the following property values:

4. Click Test Connection to ensure you can connect to the Code Insight server. A message box is displayed, indicating
whether the test is successful. If the test is unsuccessful, adjust the property values as needed and retest the
connection.

5. When the plugin has been properly configured, click Apply and Close.

Field Description

Server URL The URL for the Code Insight core server (for example, http://
codeInsightserver.myorg.org:8888/codeinsight/). Ensure that the URL is
publicly accessible and that the port is available.

Project Name The name of the project that was created in the Code Insight user interface (for
example, ScanProject2_eclipse).

Token The JSON Web Token (JWT) used to authorize user access to the Code Insight
functionality. Generate this token using the Code Insight Web UI and then copy and
paste it in this field. For more information, see Providing an Authorization Token.

Scan Directory The folder containing the code to scan (for example, C:\Users\user1\eclipse-
workspace\project2_code).

Alias A name that you define for the scan-agent plugin. The alias is used to represent the
“container” (scan root) under which all the files scanned in this instance will be listed
in the API output and in the file tree in the Analysis Workbench. This name must be
unique within the project.

Host (Optional) A user-defined name for the instance where the scan-agent plugin is
configured to run scans. This property along with the alias property will remain
unchanged for each subsequent rescan.

Although optional in general, this value is required if you are running the scan in a
dynamic host environment. See Note About Rescans Performed by 2.0 Plugins.
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 19

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Integrated Development Environments (IDEs)
Running a Scan within Your Eclipse Environment
Once the Eclipse plugin has been properly configured, you can invoke a scan on your codebase.

Task To run a scan on your codebase, do the following:

1. In Eclipse, select the project whose codebase you want to scan, right-click the project entry, and select Code Insight |
Scan Project. The Code Insight scan window is opened, enabling you to keep track of the scan progress.

2. When the scan completes, do one of the following:

• Click Finish to close the Code Insight scan window.

• Click View Inventory to connect to Code Insight, which opens to the Project Inventory tab for the project
created for the scan. From here you can review, manage, and remediate the inventory resulting from the scan.
For further instructions, refer to “Reviewing Published Inventory” in the “Using Code Insight” chapter in the Code
Insight User Guide.

Uninstalling the Eclipse Plugin
Use the following procedure to uninstall the Eclipse plugin.

Task To uninstall the Eclipse plugin, do the following:

1. Open Eclipse, and select Help | About Eclipse.

2. In the About Eclipse window, click Installation Details.

3. In the Eclipse Installation Details window, select Code Insight Scan Plugin, and click Uninstall....

The Uninstall window is displayed, listing the plugin.

4. Click Finish to confirm that you want to uninstall the plugin and to start the process.

5. Restart Eclipse when prompted to do so.

6. Navigate to the plugins folder in Eclipse (under either eclipse-home/plugins or userhome/.p2/pool/plugins); and
remove the code-insight-eclipse-scan_X.0.0 folder.
20 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Integrated Development Environments (IDEs)
7. Navigate to and open the artifacts.xml file in Eclipse (under either eclipse-home/artifacts.xml or userhome/.p2/
pool/artifacts.xml), and remove the codeinsight-Eclipse-scan and flexNet.code.insight.scan.plugin
sections from the file.

8. Navigate to the features folder in Eclipse (under either userhome/.p2/pool or eclipse-home), and remove the
flexNet.code.insight.scan.plugin_X.0.0 folder (if it exists).

Visual Studio Plugin
The Code Insight plugin for Visual Studio (called the Visual Studio plugin) enables development teams perform Code Insight
scans within their Microsoft Visual Studio IDE environment. The scan results are automatically sent to the Code Insight
server for inventory review, management, remediation, and security-alerting through the Code Insight user interface.

To enable this functionality, you need to install the Visual Studio plugin and configure it for your Visual Studio solution, as
described in the following topics. Plugin configuration and scan execution can be performed through either the Visual
Studio IDE interface or MSBuild.

• Prerequisites for the Visual Studio Plugin

• Installing the Visual Studio Plugin

• Configuring the Visual Studio Plugin

• Executing a Scan

• Disabling or Uninstalling the Visual Studio Plugin

Prerequisites for the Visual Studio Plugin
Before you can install and configure the Visual Studio plugin, perform the required tasks described in Preparing to Use the
Plugins. Note that one of these required tasks is to create a project on the Code Insight server in which to store scan results
for analysis and review in Code Insight. If you prefer, you can have the configuration process for the Visual Studio plugin
create this project for you, as described later in Configuring the Visual Studio Plugin.

Note • Microsoft Visual Studio Express does not support the Visual Studio plugin.

Installing the Visual Studio Plugin
Use Visual Studio IDE to install the Visual Studio plugin extension

Task To install the Visual Studio plugin, do the following:

1. In Visual Studio IDE, select Tools | Extensions and Updates.

2. In the Extensions and Updates tree, search for the Code Insight for Visual Studio extension in the Online | Visual
Studio Marketplace category.
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 21

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Integrated Development Environments (IDEs)
3. When you locate the extension, click Download to download and automatically launch the plugin installer.

You are prompted to select the Visual Studio version to which you are installing the plugin.

4. Select the appropriate Visual Studio version, and click Install.

5. When the installation completes, restart Visual Studio IDE to apply the extension.

Configuring the Visual Studio Plugin
After the plugin is installed, it must be configured in Visual Studio to enable codebase scans for a specific solution. If you
have not already created a Code Insight project in which to store the scan results on the Code Insight server, the
configuration process can create this project for you.

You can configure the plugin either in Visual Studio IDE or through the MSBuild command interface:
22 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Integrated Development Environments (IDEs)
• Configuration Using Visual Studio IDE

• Configuration Using MSBuild

Configuration Using Visual Studio IDE

During the Visual Studio plugin installation, the Code Insight Properties icon is added to the Solution Explorer
toolbar in Visual Studio IDE. This icon provides access to the settings needed to configure the plugin at the solution level.

The following steps describe this configuration process.

Task To use the Visual Studio IDE interface to configure the Visual Studio plugin, do the following:

1. In Visual Studio IDE, open the Visual Studio solution that you intend to scan.

2. In the Solution Explorer toolbar, click the Code Insight Settings icon .

The Code Insight Settings dialog is displayed.
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 23

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Integrated Development Environments (IDEs)
3. Complete the following fields on the dialog to configure the Visual Studio plugin for the current solution. All fields with
an asterisk are required.

Field Description

Code Insight Server Enter the URL for the Code Insight core server in the format http://
<SERVERHOSTNAME>:<PORT>/codeinsight/ (for example, http://
codeInsightServer.myorg.org:8888/codeinsight/).

Ensure that the URL is publicly accessible and that the port is available.

Authentication Token Provide the JSON Web Token (JWT) used to authorize user access to the Code Insight
functionality. You generate this token using the Code Insight Web UI and then copy
and paste it in this field. For more information, see Providing an Authorization
Token.

Code Insight Project Enter the name of the Code Insight project that already exists or that you want this
configuration process to create on the Code Insight server to store scan results.

If you want the configuration process to create the specified Code Insight project,
select Create New Project (see the next table entry).

If the specified project already exists on the Code Insight server, do not select Create
New Project or Create Private Project (see the next table entries).
24 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Integrated Development Environments (IDEs)
4. Click OK to save the plugin configuration.

Configuration Using MSBuild
The following steps describe how to use MSBuild to configure the Visual Studio plugin once it is installed.

Create New Project Select this option if you want the configuration process to create a project in which
to store scan results on the Code Insight server. The project is the name specified for
Code Insight Project. The Project Owner is the user who generated the JWT
provided for Authentication Token.

If you want this new project to be public—that is, viewable by all Code Insight users—
leave the next option, Create Private Project, unselected.

Otherwise, select Create Private Project (described next).

Create Private Project Select this option if you selected Create a New Project and want this new project to
be a private—that is, accessible by only the Project Owner and users assigned to
project roles. The Project Owner is the user who generated the JWT provided for
Authentication Token.

Leave this option unselected if you want the new project to be public.

Alias A name that you define for the scan-agent plugin. The alias is used to represent the
“container” (scan root) under which all the files scanned in this instance will be listed
in the API output and in the file tree in the Analysis Workbench. This name must be
unique within the project.

Folders to Scan The auto-generated list of codebase folders to scan, based on the current output
configuration of the Visual Studio project. To append additional codebase folders to
scan, specify their absolute paths, separating each with a comma.

Note • This field is pre-populated with output directories for only those project types
that have configuration support. For project types that do not support configuration,
such as Silverlight or JavaScript, you must specify the absolute path for each folder to
scan, separating each path with a comma.

Scan Solution After Build Select this option to execute the Code Insight scan automatically after the Build or
Rebuild Solution step. If this option is not selected, you must start each scan
manually, as described in Executing a Scan.

Host (Optional) A user-defined name for the instance where the scan-agent plugin is
configured to run scans. This property along with the alias property will remain
unchanged for each subsequent rescan.

Although optional in general, this value is required if you are running the scan in a
dynamic host environment. See Note About Rescans Performed by 2.0 Plugins.

Field Description
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 25

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Integrated Development Environments (IDEs)
Task To use the Visual Studio IDE interface to configure the Visual Studio plugin, do the following:

1. Launch Visual Studio IDE in Run As Administrator mode to enable the Visual Studio plugin for MSBuild and create a
project/solution. You need to perform this step only once.

2. Copy the template configuration file codeinsight_scan_settings.ini from
<LOCAL_APP_DATA>\Local\Microsoft\VisualStudio to the Visual Studio solution folder you want to scan.

The following is an example solution folder to which to copy the file: C:\Users\jsmith\Documents\Visual Studio
2015\Projects\MyProject.

3. In a text editor, open the codeinsight_scan_settings.ini that you copied to the solution folder, and provide the
following values in the Settings section:

Property Description

CodeInsight
Server

Provide the URL for the Code Insight core server in the format http://
<SERVERHOSTNAME>:<PORT>/codeinsight/ (for example, http://
codeInsightServer.myorg.org:8888/codeinsight/).

Ensure that the URL is publicly accessible and that the port is available.

AuthenticationToken Provide the JSON Web Token (JWT) used to authorize user access to the Code Insight
functionality. You generate this token using the Code Insight Web UI and then copy
and paste it in this field. For more information, see Providing an Authorization
Token.

CodeInsight
Project

Provide the name of the Code Insight project that already exists or that you want this
configuration process to create for you on the Code Insight server to store scan
results.

If you want the configuration process to create the Code Insight project you specified
here, also set CreateNewProject to True (see the later table entry).

If the specified project already exists on the Code Insight server, ensure that
CreateNewProject and CreatePrivateProject are set to False.

ScanFolders Specify the absolute paths for the project output folders (or any additional folders)
to scan for the solution, separating each path with a comma.

CreateNewProject If the Code Insight project you specified for CodeInsightProject already exists, set
this property to False.

However, if you want the plugin-configuration process to create a new project in
which store scan results on the Code Insight server, set this property to True. The
project is the name specified for CodeInsightProject. The Project Owner is the user
who generated the JWT provided for AuthenticationToken.

Use the CreatePrivateProject property to define the new project as public or
private.
26 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Integrated Development Environments (IDEs)
4. Save the file changes.

Executing a Scan
Once the Visual Studio plugin has been properly configured, you can manually invoke a scan on your solution codebase
whenever needed. Trigger the scan from either Visual Studio IDE or through MSBuild commands:

• Scan Execution Using Visual Studio IDE

• Scan Execution Using MSBuild

The Visual Studio plugin can also be configured to trigger a scan automatically at the end of each build or rebuild. (See
Configuring the Visual Studio Plugin for configuration details.) When the scan completes, you can click the URL at the end
of the build output to connect to Code Insight. You are opened to the Project Inventory tab, where you can review and
remediate the project inventory resulting from the scan. Refer to “Reviewing Published Inventory” in the “Using Code
Insight” chapter in the Code Insight User Guide.

Scan Execution Using Visual Studio IDE
Use the following procedure to manually invoke a Code Insight scan on your solution codebase in Visual Studio IDE.

CreatePrivateProject Determine whether the new project is to be created as public or private:

• If you want this new project to be public—that is, viewable by all Code Insight
users, set this property to False.

• If you want this project to private to private—that is, viewable and managed by
the Project Owner and select users, set this property to True. (The Project
Owner is the user who generated the JWT provided for AuthenticationToken.)

ScanAfterBuild Specify True to have the Code Insight scan execute automatically after the Build or
Rebuild Solution step.

Specify False to start each scan manually, as described in Executing a Scan.

Alias A name that you define for the scan-agent plugin. The alias is used to represent the
“container” (scan root) under which all the files scanned in this instance will be listed
in the API output and in the file tree in the Analysis Workbench. This name must be
unique within the project.

Host (Optional) A user-defined name for the instance where the scan-agent plugin is
configured to run scans. This property along with the alias property will remain
unchanged for each subsequent rescan.

Although optional in general, this value is required if you are running the scan in a
dynamic host environment. See Note About Rescans Performed by 2.0 Plugins.

Property Description
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 27

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Integrated Development Environments (IDEs)
Task To run a scan using Visual Studio IDE, do the following:

1. In the Solution Explorer in your Visual Studio IDE, navigate to the solution you want to scan.

2. Right-click the solution entry, and select Code Insight Scan to start the scan.

3. When the scan completes, click the URL at the end of the build output to connect to Code Insight. You are opened to
the Project Inventory tab for the Code Insight project created for the scan. From here you can review, manage, and
remediate the inventory resulting from the scan. For further instructions, refer to “Reviewing Published Inventory” in
the “Using Code Insight” chapter in the Code Insight User Guide.

Scan Execution Using MSBuild
The following procedure uses MSBuild commands to manually invoke a Code Insight scan on your solution codebase.
28 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Integrated Development Environments (IDEs)
Task To run a scan using MSBuild, do the following:

1. Open a command-line prompt as an administrator, navigate to the MSBuild directory.

Note that these directories might vary based on your Visual Studio version:

2. Enter the following command:

MSBuild.exe “<PATH_OF_SOLUTION_FILE>” /p:CodeInsightScan=true

The command uses these parameters:

• <PATH_OF_SOLUTION_FILE>—The absolute path of the solution directory you are scanning.

• CodeInsightScan—The parameter indicating that you want to run a Code Insight scan. Set this parameter to
true. If you omit this option or set it to false, no scan is run.

• CodeInsightConfig—(Optional) The absolute path of the .ini configuration file if it does not reside in the
solution directory specified for <PATH_OF_SOLUTION_FILE>. If you provide a value for this option, use the
following command syntax:

MSBuild.exe “<PATH_OF_SOLUTION_FILE>” /p:CodeInsightScan=true;
CodeInsightConfig=<ABSOLUTE_PATH_TO_INI_CONFIG_FILE>

3. When the scan completes, click the URL at the end of the build output to connect to Code Insight. You are opened to
the Project Inventory tab for the Code Insight project created for the scan. From here you can review, manage, and
remediate the inventory resulting from the scan. For further instructions, refer to “Reviewing Published Inventory” in
the “Using Code Insight” chapter in the Code Insight User Guide.

Disabling or Uninstalling the Visual Studio Plugin
Use the following procedure to disable or uninstall the Visual Studio plugin.

Task To uninstall the Visual Studio plugin, do the following:

1. Open Visual Studio IDE, and select Tools | Extensions and Updates.

2. Select the Installed category in the left pane.

3. From the list of applications, select Code Insight Scan for Visual Studio, and click Disable or Uninstall.

Visual Studio
Version MSBuild Directory

VS2017 c:\Program Files (x86)\Microsoft Visual
Studio\2017\<INSTALLED_EDITION>\MSBuild\15.0\Bin

VS2012, VS2015 C:\Windows\Microsoft.NET\Framework\<FRAMEWORK_VERSION>

VS2015 C:\Program Files (x86)\MSBuild\14.0\Bin
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 29

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Continuous Integration (CI) Tools
4. Restart Visual Studio IDE to verify that the plugin has been disabled or removed from the list of applications.

Plugins for Continuous Integration (CI) Tools
Code Insight provides the following scan-agent plugins that integrate with continuous integration (CI) tools:

• Azure DevOps Extension

• Bamboo Plugin

• GitLab Plugin

• Jenkins Plugin

• Scan Scheduler Plugin for Jenkins

• TeamCity Plugin

Azure DevOps Extension
A Code Insight extension for Azure DevOps is available for downloading from the Visual Studio Marketplace. This extension
allows development teams to easily integrate Code Insight scanning into their Azure DevOps build process and send scan
results to the Code Insight server for inventory review, management, remediation, and security-alerting through the Code
Insight user interface.

To enable this functionality, you need to install the extension and configure the build process to include the scan:

• Prerequisites for the Azure DevOps Extension

• Installing the Azure DevOps Extension

• Adding a Scan Task to Your Azure DevOps Agent Job
30 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Continuous Integration (CI) Tools
Prerequisites for the Azure DevOps Extension
Before you can install and configure the Azure DevOps extension, perform the required tasks described in Preparing to Use
the Plugins for details.

Installing the Azure DevOps Extension
To obtain and install the Azure DevOps extension, perform the following steps.

Task To obtain and install the extension, do the following:

1. Open the Visual Studio Marketplace:

https://marketplace.visualstudio.com/

2. In the Azure DevOps section, search for the FlexNet Code Insight Scan extension.

3. Download and install this extension into Azure DevOps.

Adding a Scan Task to Your Azure DevOps Agent Job
After the Azure DevOps extension has been installed, you need to add a Code Insight scan task to your Azure DevOps agent
job so that the scan is automatically performed as part of your build process.

Task To add a scan task to your DevOps agent job, do the following:

1. Create a build pipeline for your Azure DevOps project.

2. Locate the FlexNet Code Insight Scan task under the Builds section in the task catalog.
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 31

https://marketplace.visualstudio.com/

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Continuous Integration (CI) Tools
3. Add the FlexNet Code Insight task at any point after the build task has completed.

4. Define the scan task properties on the FlexNet Code Insight Scan window.
32 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Continuous Integration (CI) Tools
The following describes the task properties:

5. Save and queue the build definition.

Field Description

FlexNet Code Insight
Server

The URL for the core server (for example, http://
codeInsightServer.myorg.org:8888/codeinsight/). Ensure that the URL is
publicly accessible and that the port is available.

Authorization Token The JSON Web Token (JWT) used to authorize user access to the Code Insight
functionality. Generate this token using the Code Insight Web UI and then copy and
paste it in this field. For more information, see Providing an Authorization Token.

FlexNet Code Insight
Project Name

The name of the project that was created in the Code Insight user interface (for
example, ScanProject2_AzureDevOps).

Alias A name that you define for the scan-agent plugin. The alias is used to represent the
“container” (scan root) under which all the files scanned in this instance will be listed
in the API output and in the file tree in the Analysis Workbench. This name must be
unique within the project.

Folder(s) to Scan The folder containing the code to scan. Typically, you would use
$(build.artifactstagingdirectory), which is the location where the build output
is staged during the build process.

Host (Optional) A user-defined name for the instance where the scan-agent plugin is
configured to run scans. This property along with the alias property will remain
unchanged for each subsequent rescan.

Although optional in general, this value is required if you are running the scan in a
dynamic host environment. See Note About Rescans Performed by 2.0 Plugins.
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 33

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Continuous Integration (CI) Tools
The scan will be performed in the build environment as part of the build process, and the results will be sent to the project
you configured on the Code Insight server. The resulting inventory items can be viewed and managed in the Code Insight
user interface.

Bamboo Plugin
Code Insight provides a Bamboo plugin that allows automated scanning of a Bamboo workspace as part of your
application build process. The scan results are sent to Code Insight for inventory creation, review, and security alerting.

The Bamboo plugin scans only the application root folder.

The following topics describe how to install and configure this plugin on the Bamboo build server:

• Prerequisites for the Bamboo Plugin

• Installing and Configuring the Bamboo Plugin

Prerequisites for the Bamboo Plugin
Before you install and configure the Bamboo plugin, ensure that the following prerequisites are met:

• All Code Insight prerequisite tasks for plugins have been performed, as described in Preparing to Use the Plugins.

• Bamboo 5.2 or higher is installed and configured as explained in the Bamboo installation documentation.

• The Bamboo server instance on which you are running the plugin can be a Local Agent or Remote Agent.

• Maximum heap memory size is set to 4 GB for the Bamboo server (Local or Remote Agent, wherever the plugin is
running). This size can be configured using the following property in wrapper.conf:

wrapper.java.maxmemory=4096

Note that this is the recommended size value. However, heap size is relative to the size of the codebase. A large
codebase requires this value to be increased 6GB or 8 GB.

• Event details for scans run on a Local Agent are logged to the <BAMBOO_HOME>/logs/atlassian-bamboo.log file. On a
Bamboo Remote Agent, the events are logged to the <BAMBOO_REMOTE_DIR>/logs/atlassian-bamboo.log file.

Installing and Configuring the Bamboo Plugin
The following procedure covers installing and configuring the Bamboo plugin, which requires you to perform actions in
both Bamboo and Code Insight.

Task To install and configure the Bamboo plugin, do the following:

1. Extract the Bamboo plugin from the CodeInsightversionPlugins.zip file. For more information, see Downloading
Plugins.

2. Access your Bamboo server instance.

3. From the Bamboo Administration icon, click Add-ons.

4. Click Upload add-on.
34 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Continuous Integration (CI) Tools
5. Browse to the code-insight-bamboo-scan.jar and click Upload. The Bamboo jar file is located wherever the zip file
containing the plugins was extracted.

6. Create a project in Bamboo by creating the plan, adding a job, and then adding a Code Insight Scan task. To create the
task, access the FlexNet Code Insight Scan Task Configuration window.

7. Enter the following information in the FlexNet CodeInsight Scan Task Configuration window:

• Task description—A label for this scan task.

• Disable this task—The option to disable or enable the scan task as needed.

• Server URL—The URL for the Code Insight core server (for example, http://
codeInsightServer.myorg.org:8888/codeinsight/).

• Authentication Token—The JSON Web Token (JWT) used to authorize user access to the Code Insight
functionality. Generate this token using the Code Insight Web UI and then copy and paste it in this field. For more
information, see Providing an Authorization Token.

• Project Name—The name of the project that you created in the Code Insight to associate with this scan task.

• Alias—A name that you define for the scan-agent plugin. The alias is used to represent the “container” (scan root)
under which all the files scanned in this instance will be listed in the API output and in the file tree in the Analysis
Workbench. This name must be unique within the project.

• Folder(s) to scan—The one or more folders to scan. If you want to scan the entire working folder, leave this field
blank. However, to scan specific folders in the working directory, list the path for each folder as relative to the
working folder, using commas to separate multiple folders.
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 35

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Continuous Integration (CI) Tools
For example, the working directory opt/atlassian/workingDirectory/project has the following source sub-
folders:

/opt/atlassian/workingDirectory/project/source1
/opt/atlassian/workingDirectory/project/source2
/opt/atlassian/workingDirectory/project/source3
/opt/atlassian/workingDirectory/project/source4/source4a

• To scan the source1 folder only, enter source1.

• To scan both source1 and source2, enter the following:

source1, source2

• To scan the source4a folder, enter source4/source4a.

• Host—(Optional) A user-defined name for the instance where the scan-agent plugin is configured to run scans.
This property along with the alias property will remain unchanged for each subsequent rescan.

Although optional in general, this value is required if you are running the scan in a dynamic host environment.
See Note About Rescans Performed by 2.0 Plugins.

8. Click Save. If the Server URL and Token values are correct, the task will be saved. The next time you run the plan, the
automated scan of the workspace will be executed for the configured project as part of the plan.

Note • The scan task should be placed after the build task in the plan’s task sequence.

GitLab Plugin
This section explains how to configure GitLab to integrate with the Code Insight generic scan-agent plugin to perform an
automatic composition scan as part of the build process in a Windows environment. The following topics are covered. Note
that the scan requires the generic scan-agent plugin.

• Prerequisites for the GitLab Plugin

• Installing the Generic Scan Agent on GitLab Runner

• Configuring the CI/CD Pipeline to Run a Scan

• Executing the Build

Prerequisites for the GitLab Plugin
The following prerequisites are required to integrate GitLab with the Code Insight generic scan-agent plugin:

• A GitLab runner properly installed on Windows. (Refer to https://docs.gitlab.com/runner/install/ for
instructions.)

• All the prerequisites listed in Prerequisites for the Generic Scan-Agent Plugin.

• The generic scan-agent plugin (as described in Installing the Generic Scan Agent on GitLab Runner).
36 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

https://docs.gitlab.com/runner/install/

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Continuous Integration (CI) Tools
Installing the Generic Scan Agent on GitLab Runner
Use these instructions to install the generic scan-agent plugin on the GitLab runner (installed on Windows).

Task To install the generic scan-agent plugin on the GitLab runner, do the following:

1. Download and extract the contents of the CodeInsightversionPlugins.zip file, as described in the previous section,
Downloading Plugins.

2. Locate the code-insight-agent-sdk-generic-plugin/generic-plugin-binary folder, and copy it to the GitLab
runner.

3. On the GitLab runner, update the following to match your environment:

• The codebase root:

SET ROOT_PATH=C:\GitLab-Runner\output

• The bin folder location for the generic scan-agent plugin:

cd C:\GitLab-Runner\GenericScanPlugin\example\bin

4. If you want the generic scan-agent plugin to detect transitive dependencies during scans, follow the procedure
described in Enabling the Generic Scan-Agent Plugin to Detect Transitive Dependencies to configure this capability.

Configuring the CI/CD Pipeline to Run a Scan
To configure the CI/CD pipeline in your GitLab project to run a Code Insight scan, you need to edit your .gitlab-ci.yml
file.

Task To edit the .gitlab-ci.yml file, do the following:

Add the following contents to the file:

variables:
 CODEINSIGHT_SERVER: <CODEINSIGHT SERVER>
 AUTH_TOKEN: <AUTH TOKEN>
 CODEINSIGHT_PROJECT: <CODEINSIGHT PROJECT NAME>

codeinsight_scan:
 stage: test
 only:
 - mainline
 tags:
 - <tag for your GitLab-Runner>
 script:
 - cmd /Q /C C:\Gitlab-runner\GenericScanPlugin\example\bin\run_scan.bat %CODEINSIGHT_PROJECT%
%CODEINSIGHT_SERVER% %AUTH_TOKEN% %CI_PROJECT_DIR%
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 37

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Continuous Integration (CI) Tools
Replace the following variables with the appropriate information:

• <CODEINSIGHT SERVER>—The URL of the Code Insight Core Server (for example, http://1.1.1.1:8888/
codeinsight).

• <AUTH TOKEN>—Your JSON Web Token (JWT) used to authorize user access to the Code Insight functionality.
Generate this token using the Code Insight Web UI and then copy and paste it in this field. For more information, see
Providing an Authorization Token.

• <CODEINSIGHT PROJECT NAME>—The project you created in Code Insight to store the scan results.

• <tag for your GitLab-Runner>—The tag for your GitLab runner.

%CI_PROJECT_DIR% is the GitLab variable for the project path where the code is built. You can replace it with the path of the
folder containing the binaries of your built project.

Executing the Build
The next time your build is executed, a Code Insight agent scan is performed at the end of the build process. If you have
scheduled the Code Insight scan job after a Maven build, for example, you should see something like this in your GitLab
pipeline:

Note • Note that the first time a scan is performed using the generic scan-agent plugin, a data snapshot is downloaded from
the National Vulnerability Database (NVD) to generate an index of the latest security vulnerabilities.

Jenkins Plugin
Code Insight provides a Jenkins plugin that enables automated scanning of the Jenkins workspace as part of the build
process or Jenkins Pipeline process. The scan results are sent to Code Insight for inventory creation, review, and security
alerting.

The Jenkins plugin installation and configuration process proceeds in the following manner:

Phase 1—Address the prerequisites for the Jenkins plugin. See Prerequisites for the Jenkins Plugin.

Phase 2—Set the heap size. See Setting Heap Size for the Jenkins Plugin.

Phase 3—Set up the Jenkins plugin. See Setting Up the Code Insight Jenkins Plugin.

For examples on how to include the Code Insight scan as a part of a Jenkins Pipeline, see Support for the Jenkins Pipeline.
38 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Continuous Integration (CI) Tools
Prerequisites for the Jenkins Plugin
Before you install and configure the Jenkins plugin, ensure that the following prerequisites are met:

• Ensure that Jenkins is installed and configured properly in your environment.

• Perform the required Code Insight tasks for plugins, as described in Preparing to Use the Plugins.

Setting Heap Size for the Jenkins Plugin
The Jenkins plugin requires a minimum of 4GB heap for scanning. The heap size may need to be adjusted based on the
number of parallel scans to be executed. In addition, ensure that you are using a 64-bit Java virtual machine (JVM) and that
you run the scan-agent as a Jenkins agent, which is a Java executable that usually runs on a remote machine. The
procedure for setting the heap size differs depending upon the environment you are using, Windows or Linux. Follow the
procedure for your environment.

On Windows

Use this procedure to set the heap size in a Windows environment.

Task To set the heap size in Windows, do the following:

1. Open the jenkins.xml configuration file.

2. Update the <EXECUTABLE> value to point to your 64-bit JVM:

<EXECUTABLE>C:\Java\jdk1.8\jre\bin\java</EXECUTABLE>

3. Update the JVM arguments (-Xmx value) to allocate a minimum heap size of 4GB:

<ARGUMENTS>-Xrs -Xmx4g -Dhudson.lifecycle=hudson.lifecycle.WindowsServiceLifecycle -jar
"%BASE%\jenkins.war" --httpPort=8080 --webroot="%BASE%\war"</ARGUMENTS>

Note • The heap size may have to be adjusted based on the number of parallel scans to be executed.

On Linux

Use this procedure to set the heap size in a Linux environment.

Task To set the heap size in Linux, do the following:

1. Open the /etc/default/jenkins file.

2. Update the JVM arguments to allocate a minimum heap size of 4GB:

JAVA_ARGS="-Xmx4096m"

Note • The heap size might need to be adjusted based on the number of parallel scans to be executed.
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 39

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Continuous Integration (CI) Tools
Setting Up the Code Insight Jenkins Plugin
The following procedure describes how to configure the Jenkins plugin.

Task To set up the Jenkins plugin, do the following:

1. Extract the Jenkins plugin from the CodeInsightversionPlugins.zip file. For more information, see Downloading
Plugins.

2. Access your Jenkins server instance and navigate to Manage Jenkins -> Manage Plugins -> Advanced tab -> Upload
Plugin.

3. Browse to the code-insight-scan-plugin.hpi file, and click Upload.

4. Restart the Jenkins server after installing the plugin.

5. Create a new Jenkins project:

a. Click New Item.

b. Enter a name.

c. Select a project type.

d. Click OK.

6. To configure the project, select Add post-build action from the Post-build action dropdown menu, and select Scan
with FlexNet Code Insight. The Scan with FlexNet Code Insight dialog appears.

7. Enter the following information in the Scan with FlexNet Code Insight dialog:

• Code Insight Core Server Base URL—The URL for the core server (for example, http://
codeInsightServer.myorg.org:8888/codeinsight).

• User Access Token—The JSON Web Token (JWT) used to authorize user access to the Code Insight functionality.
Generate this token using the Code Insight Web UI and then copy and paste it in this field. For more information,
see Providing an Authorization Token.

• Project Name—The name of the project that was created in the Code Insight user interface (for example,
ScanMain_WindowsJenkins1).

• Alias—A name that you define for the scan-agent plugin. The alias is used to represent the “container” (scan root)
under which all the files scanned in this instance will be listed in the API output and in the file tree in the Analysis
Workbench. This name must be unique within the project.

• Host—(Optional) A user-defined name for the instance where the scan-agent plugin is configured to run scans.
This property along with the alias property will remain unchanged for each subsequent rescan.

Although optional in general, this value is required if you are running the scan in a dynamic host environment.
See Note About Rescans Performed by 2.0 Plugins.

8. Click Test Connection to test your connection to Code Insight.

9. Click Save. The next time you build, the scan will be performed after the build action.
40 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Continuous Integration (CI) Tools
Note • Ensure that your Jenkins server environment has a minimum of 4GB of heap space, adjusted based on the number of
parallel scan to be executed. Also ensure that the environment is configured with a 64-bit JRE to support that amount of heap
space. In addition, run the scan-agent as a Jenkins agent.

Support for the Jenkins Pipeline
The Code Insight plugin for Jenkins supports the inclusion of the Code Insight scan in a Jenkins Pipeline, as described in
the following topics:

• Providing the Pipeline Script for the Scan Step

• Pipeline Code Examples for Running the Scan

See the previous section for a description of the properties used in the Pipeline commands.

Providing the Pipeline Script for the Scan Step
Once you build the Pipeline job, you need to include the Pipeline script for the scan step, StartScan, in your Pipeline code.
(The next section, Pipeline Code Examples for Running the Scan, provides examples of Pipeline code that include this
script.)

To create the Pipeline script for the StartScan step, you can use one of these methods:

• Go to the Snippet Generator, select the StartScan: Scan workspace and send results to FlexNet Code Insight step,
and generate the script. Then copy and paste the generated script into the Pipeline code.

• Simply create the script for the StartScan step as highlighted in the Pipeline code examples.

 See Setting Up the Code Insight Jenkins Plugin for a description of the properties (base URL, project name, and JWT) used
in the Pipeline script.

Pipeline Code Examples for Running the Scan
Jenkins supports two syntax types for the development of Pipeline code:

• Scripted syntax—The “traditional” syntax used to develop the Pipeline as a script using Groovy as the domain-
specific language.

• Declarative syntax—A simple, user-friendly syntax with a predefined hierarchy of statements that makes Pipeline
development easier than with the Scripted syntax. Additionally, it does not require knowledge of the Groovy
language. Jenkins support for the Declarative syntax was introduced with Jenkins Pipeline Plugin 2.5.

The following examples show both types of Pipeline code syntax in which the Pipeline script for the scan has been
incorporated:

• Example Declarative Pipeline Code to Run the Scan

• Example Scripted Pipeline Code to Run the Scan

The Pipeline script for the scan step is highlighted in each example.
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 41

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Continuous Integration (CI) Tools
Example Declarative Pipeline Code to Run the Scan

The following is an example of Declarative code used to run the Code Insight scan as a StartScan step in the Pipeline
process:

pipeline {
 agent any
 stages {
 stage('Checkout build and scan project1') {
 steps {
git credentialsId: 'abcd', url: 'git://git.company.com/organization/repository1.git'
sh "'PATH_TO_MAVEN/bin/mvn' clean install"

StartScan (baseUrl: '<http://HOST_NAME:PORT/>', projectName: '<CODEINSIGHT_PROJECT_NAME>', alias:
'<SCAN-AGENT_ALIAS>', host: '<SCAN-AGENT_HOST>', token: '<JWT_TOKEN>')
 }
 }
}
}

Example Scripted Pipeline Code to Run the Scan

The following is an example of Scripted Pipeline code used to run the Code Insight scan as a StartScan step in the Pipeline
process. The example also shows how to set up individual scans within a single Pipeline job by specifying multiple
directories.

node {
checkout1()
checkout2()
}

def checkout1(){
 dir("project-1"){
 stage ('Checkout project 1'){
 git credentialsId: 'abcd', url: 'git://git.company.com/organization/repository1.git'
 }
 stage ('Build Project 1'){
 build()
 }
 stage ('Scan Project 1'){
 StartScan (baseUrl: '<http://HOST_NAME:PORT/>', projectName:
 '<CODEINSIGHT_PROJECT_NAME>', alias: '<SCAN-AGENT_ALIAS>', host:
 '<SCAN-AGENT_HOST>', token: '<JWT_TOKEN>')
 }
 }
 }

def checkout2(){
 dir("project-2"){
 stage ('Checkout project 2'){
 git credentialsId: 'abcd', url: 'git://git.company.com/organization/repository2.git'
 }
 stage ('Build Project 2'){
 build()
 }
 stage ('Scan Project 2'){
42 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Continuous Integration (CI) Tools
 StartScan (baseUrl: '<http://HOST_NAME:PORT/>', projectName:
'<CODEINSIGHT_PROJECT_NAME>',
 alias: '<SCAN-AGENT_ALIAS>', host: '<SCAN-AGENT_HOST>', token:
 '<JWT_TOKEN>')
 }
 }
 }
def build(){
 sh "'PATH_TO_MAVEN/bin/mvn' clean install"
 }

Scan Scheduler Plugin for Jenkins
The Jenkins Scan Scheduler plugin enables you to simply schedule the scan of a codebase residing on the Code Insight
scan server via the Jenkins scheduler. Before you install and configure the Jenkins Scan Scheduler plugin, ensure that the
following prerequisites are met:

• Jenkins must be installed and configured properly in your environment.

• The project of interest must be set up in Code Insight. For information on creating a Code Insight project, see “Creating
a Project” in the Code Insight User Guide.

Task To install the Code Insight Scan Scheduler for Jenkins, do the following:

1. Sign into Jenkins CI.

2. Navigate to Manage Jenkins > Manage Plugins > Advanced. The Upload Plugin dialog appears.

3. Click Choose File and select the code-insight-scan-scheduler.hpi file.

4. Click Upload.

5. Restart the Jenkins server after uploading the plugin.

6. Create a new Jenkins project:

• Click New Item.

• Enter a name.

• Select a project type.

• Click OK.

7. To configure the project, select Add build step from the Build dropdown menu, and select Schedule a Code Insight
Scan. The Schedule a Code Insight Scan dialog appears.

8. Enter the following information in the Schedule a Code Insight Scan dialog:

• Server URL—The URL for the Code Insight Core server. For example, http://
codeInsightServer.myorg.org:8888/codeinsight/.

• Token—The JSON Web Token (JWT) used to authorize user access to the Code Insight functionality. Generate
this token using the Code Insight Web UI and then copy and paste it in this field. For more information, see
Providing an Authorization Token.
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 43

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Continuous Integration (CI) Tools
• Project ID—The ID of the project that was created in the Code Insight Web UI.

9. Click Test Connection to test your connection to Code Insight.

10. Click Save. The next time you build, the scan will be scheduled on the Code Insight server for the configured project as
part of the build.

TeamCity Plugin
This section explains how to configure TeamCity to integrate with the Code Insight’s generic scan-agent plugin to perform
an automatic composition scan as part of the build process. The following topics are covered. Note that the scan requires
the generic scan-agent plugin.

• Prerequisites for TeamCity Plugin

• Installing the Generic Scan-Agent on the Team City Build Agent

• Configuring a Build to Run a Code Insight Scan

• Executing the Build

Prerequisites for TeamCity Plugin
The following prerequisites are required to integrate TeamCity with the Code Insight generic scan-agent plugin:

• A TeamCity build agent properly installed. (Refer to https://confluence.jetbrains.com/display/TCD10//
Setting+up+and+Running+Additional+Build+Agents for instructions.)

• All the prerequisites listed in Prerequisites for the Generic Scan-Agent Plugin.

• The generic scan-agent plugin (as described in Installing the Generic Scan-Agent on the Team City Build Agent).

Installing the Generic Scan-Agent on the Team City Build Agent
Use these instructions to install the generic scan-agent plugin on the Team City build agent.

Task To install the generic scan-agent plugin on the Team City build agent, do the following:

1. Download and extract the contents of the CodeInsightversionPlugins.zip file, as described in the previous section,
Downloading Plugins.

2. Locate the code-insight-agent-sdk-generic-plugin/generic-plugin-binary folder, and copy it to the TeamCity
build agent.

3. On the Team City build agent, update the following to match your environment:

• The codebase root:

SET ROOT_PATH=C:\Codebase\output

• The bin folder location for the generic scan-agent plugin:

cd C:\agent\GenericScanPlugin\example\bin
44 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

https://confluence.jetbrains.com/display/TCD10//Setting+up+and+Running+Additional+Build+Agents
https://confluence.jetbrains.com/display/TCD10//Setting+up+and+Running+Additional+Build+Agents

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Continuous Integration (CI) Tools
4. If you want the generic scan-agent plugin to detect transitive dependencies during scans, follow the procedure
described in Enabling the Generic Scan-Agent Plugin to Detect Transitive Dependencies to configure this capability.

Configuring a Build to Run a Code Insight Scan
Follow these steps to configure a build that runs a Code Insight scan.

Task To configure a build to run a Code Insight scan, do the following:

1. Log into TeamCity, select your project, and create a new Build Configuration.

2. To configure a build step to run a Code Insight scan, select on your build configuration, and click Add Build Step.

3. From the Runner type list, select Command Line.

4. Configure the Command line build step for the Code Insight scan:

a. Enter a value for Step name (for example, Codeinsight Scan) to identify the step.

b. In the Run field, select Custom script.

c. In the Custom script field, provide the following:

C:\GenericScanPlugin\example\bin\TeamCity_FNCIScan.bat <CODEINSIGHT_PROJECT_NAME>
<CODEINSIGHT_SERVER> <JWT_TOKEN> <SCAN_DIR>

Replace the following variables in the script with the appropriate information:

• <CODEINSIGHT_PROJECT>—The name of the project you created in Code Insight to capture the inventory.

• <CODEINSIGHT_SERVER>—The URL of the Code Insight Core Server (for example, http://1.1.1.1:8888/
codeinsight).

• <JWT_TOKEN>—Your JSON Web Token (JWT) used to authorize user access to the Code Insight
functionality. Generate this token using the Code Insight Web UI and then copy and paste it here. For more
information, see Providing an Authorization Token.

• <SCAN_DIR>—The directory that you want to scan.
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 45

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Package Managers and Build Tools
When complete, your build configuration should look like this:

Executing the Build
The next time your build is executed, a scan will be performed at the end of the build process. If you have scheduled the
Code Insight scan job, after a Maven build, for example, you should see something like this in your TeamCity build queue:

Note • Note that the first time a scan is performed using the generic scan-agent plugin, a data snapshot is downloaded from
the National Vulnerability Database (NVD) to generate an index of the latest security vulnerabilities.

Plugins for Package Managers and Build Tools
Code Insight provides the following scan-agent plugins that integrate with package manager and build tools:

• Apache Ant Plugin

• Gradle Plugin

• Maven Plugin
46 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Package Managers and Build Tools
Apache Ant Plugin
Apache Ant is a tool to support the build process for Java projects. Ant is often used in conjunction with other build tools
such as Maven. Code Insight provides the Apache Ant plugin to run a scan task along with the target of the build cycle and
send the results, as inventory, to the Code Insight server for review, management, and remediation. The Apache Ant plugin
scans only the application root folder.

The following topics describe how to install and configure the Gradle plugin:

• Prerequisites for the Apache Ant Plugin

• Configuring the Apache Ant Plugin

• Executing the Scan

Prerequisites for the Apache Ant Plugin
Before you install and configure the Apache Ant plugin, ensure that the following items are correctly installed and
configured:

• JDK 1.8

• Apache Ant

Also ensure that all Code Insight prerequisite tasks for plugins have been performed, as described in Preparing to Use the
Plugins.

Configuring the Apache Ant Plugin
Use the following procedure to configure the Apache Ant Plugin to execute along with the build target.

Task To configure the plugin, do the following:

1. Extract the Ant plugin from the CodeInsightversionPlugins.zip file. See Downloading Plugins.

2. Configure %ANT_HOME% and add %ANT_HOME%/bin to the path variable.

3. To check the Ant plugin installation, run the following command:

ant -v

4. Add all the dependent jars from the code-insight-ant-plugin folder to the application’s compile classpath.

5. To run the task codeinsightantplugin along with the compile target, paste the taskdef code snippet into the compile
target and run the following command:

ant compile

For the code snippet, see Executing the Scan.

6. Copy the code-insight-ant.jar into the path used for the compile task, and set the classpath refid of the javac
task as the classpathref in the codeinsightantplugin task.
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 47

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Package Managers and Build Tools
Executing the Scan
Use the following procedure to execute the scan along with the build target.

Task To execute the scan, do the following:

1. Run the following command:

ant <targetname>

For example, you might enter:

ant compile

2. To execute the scan along with any target of the build lifecycle, apply the plugin inside the target in the build.xml of
the Ant application as follows:

<taskdef name= "codeinsightantplugin" classname="com.ant.plugin.CodeInsightAntPlugIn"
classpath=" " classpathref=" " />
<codeinsightantplugin fnciServer="<SERVER_URL>" fnciauthtoken="<BEARER_SERVER_TOKEN_VALUE>"
fnciprojectname="<CODE_INSIGHT_PROJECT_NAME>"
scanDirs="<DIRECTORIES_TO_BE_SCANNED_IN_RELATION_TO_BASE_APPLICATION_PROJECT>"
alias="<SCAN-AGENT_ALIAS>"
pluginRootPath="<PLUGIN_ROOT_PATH>"
pluginProjectName="<APPLICATION_PROJECT_TO_SCAN>"
plugindescription="<APPLICATION_DESCRIPTION>"
pluginPathPrefix="<PLUGIN_PATH_PREFIX>">
</codeinsightantplugin>

See descriptions of these settings in Installing and Configuring the Gradle Plugin.

Note • The Ant plugin project name can not include the ampersand (&) character.

The following is a description of the scan settings used to apply the plugin:

• fnciServer—(Required) The hosted server where the Code Insight application is running.

• fnciAuthToken—(Required) The JSON Web Token (JWT) used to authorize user access to the Code Insight
functionality. Generate this token using the Code Insight Web UI and then copy and paste it here. Be sure to
include the command “Bearer” followed by the token value, as in the example:

 Bearer eyJhbGciOiJIUzUxMiJ9.eyJzdWIiOiJhZG1pbiIsInVzZXJJZCI6MSwia

For more information about generating this token, see Providing an Authorization Token.

• fnciProjectName—(Required) The name of the Code Insight project existing on the Code Insight server to
contain the scan results.

• scanDirs—Each path to be scanned relative to the base directory of the Ant project. For example, if the base
directory for the Ant project is D:/worksapce/project and you want to scan the directory D:/worksapce/
project/build, specify "/build" for the value here. If multiple paths are to be scanned, separate them with
commas: "/build,/build2". To indicate that all paths under the base directory are to be scanned, enter "." for
the value.
48 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Package Managers and Build Tools
• alias—A name that you define for the scan-agent plugin. The alias is used to represent the “container” (scan root)
under which all the files scanned in this instance will be listed in the API output and in the file tree in the Analysis
Workbench. This name must be unique within the project.

• pluginRootPath—(Required) The path where the plugin will be launched, usually the root of the application. An
example value is D:\\test\\Ant_test\\Ant_application. This field is required.

• pluginProjectName—(Required) The name of Ant-based application whose codebase you want to scan.

• pluginDescription—A description of the application to display on the Summary tab for the project in Code
Insight.

• pluginPathPrefix—The Code Insight server path (for example, demo_workspace/) used as a prefix for codebase
file locations, as listed on the Associated Files tab for an inventory item in the Code Insight user interface. For
example, demo_workspace/. This field is optional.

Note About “classpath”

Although specifying taskdef.classpath is not mandatory, you should set the path id of the javac task as the Classpathref
in the codeinsightantplugin taskdef. If the application does not have a javac path-id defined in the build.xml, you
must define one new path id referring to all compile time dependencies and use this as Classpathref. See the following
example:

<path id= "cp" <fileset dir="lib">
<include name="*.jar" />
</fileset>
 </path>

In this case, use "cp" as the Classpathref in the taskdef.

Gradle Plugin
Gradle is a build automation system that uses the Groovy language to establish the configuration of the build project,
rather than using XML as Maven does. The Gradle plugin provided by Code Insight scans a codebase created in Gradle and
sends the results, as inventory, to the Code Insight server for review, management, and remediation through the user
interface. The plugin scans only the following:

• Direct dependencies of a project

• Transitive dependencies of a project

• The distribution folder containing application jars

Note • The Gradle plugin does not scan the jars present in the lib folder, which contains plugin-dependent jars.

The following topics describe how to install and configure the Gradle plugin:

• Prerequisites for the Gradle Plugin

• Installing and Configuring the Gradle Plugin
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 49

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Package Managers and Build Tools
Prerequisites for the Gradle Plugin
Before you install and configure the Code Insight Gradle plugin, ensure that the following items are correctly installed and
configured:

• JDK1.8

• Gradle

Also ensure that all Code Insight prerequisite tasks for plugins have been performed, as described in Preparing to Use the
Plugins.

Installing and Configuring the Gradle Plugin
To use the Gradle plugin, you must configure settings in the application’s build.gradle. This section contains the
procedure for installing and configuring the plugin.

Task To install and configure the Gradle plugin, do the following:

1. Extract the Gradle plugin from the CodeInsightversionPlugins.zip file. See Downloading Plugins.

2. Use these steps to add all the dependent jars in the code-insight-scan-plugin to the application class path:

a. Create a folder named dependent_jars within the application project.

b. Copy all jar files into that folder.

c. Add the following configuration in build.gradle so that the jars are available to the classpath:

buildscript {
dependencies {

classpath files(fileTree(dir: 'dependent_jars', includes: ['*.jar']))
}

}

3. If the Java plugin is not already applied in the build.gradle script, do so by adding the appropriate configuration at
the beginning of the script:

• For a single module project, add the following:

apply plugin: 'java'

• For a multi-modular project:

allprojects {
apply plugin: 'java'
}

4. Apply the Gradle plugin in the build.gradle file:

apply plugin: 'code-insight-scan-plugin'

scanSettings {
fnciServer= "<SERVER_URL>"
fnciAuthToken= "<BEARER_SERVER_TOKEN_VALUE>"
fnciProjectName= "<CODE_INSIGHT_PROJECT_NAME>"
alias=<SCAN-AGENT_ALIAS>
50 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Package Managers and Build Tools
pluginRootPath= "<PLUGIN_ROOT_PATH>"
pluginProjectName= "<APPLICATION_PROJECT_TO_SCAN>"
pluginDescription= "<APPLICATION_DESCRIPTION>"
pluginPathPrefix= "<PLUGIN_PATH_PREFIX>"
}

The following is a description of the scan settings used to apply the plugin:

• scanSettings—An extension to provide the Code Insight scan server settings.

• fnciServer—(Required) The hosted server where the Code Insight application is running.

• fnciAuthToken—(Required) The JSON Web Token (JWT) used to authorize user access to the Code Insight
functionality. Generate this token using the Code Insight Web UI and then copy and paste it here. Be sure to
include the command “Bearer” followed by the token value, as in the example:

 Bearer eyJhbGciOiJIUzUxMiJ9.eyJzdWIiOiJhZG1pbiIsInVzZXJJZCI6MSwia

For more information about generating this token, see Providing an Authorization Token.

• fnciProjectName—(Required) The name of the Code Insight project existing on the Code Insight server to
contains the scan results.

• alias—A name that you define for the scan-agent plugin. The alias is used to represent the “container” (scan root)
under which all the files scanned in this instance will be listed in the API output and in the file tree in the Analysis
Workbench. This name must be unique within the project.

• pluginRootPath—(Required) The path where the plugin will be launched, usually the root of the application. An
example value is D:\\test\\Gradle_test\\Gradle_application. This field is required.

• pluginProjectName—(Required) The name of Gradle-based application whose codebase you want to scan.

• pluginDescription—A description of the application to display on the Summary tab for the project in Code
Insight.

• pluginPathPrefix—The Code Insight server path (for example, demo_workspace/) used as a prefix for codebase
file locations, as listed on the Associated Files tab for an inventory item in the Code Insight user interface. For
example, demo_workspace/. This field is optional.

5. Configure the code-insight-scan task to run during or after the build process. See Important Note About Scanning
Dependencies.

Important Note About Scanning Dependencies

Previous versions (1.x) of the Gradle scan-agent plugin scanned both the dependencies section and the project build
directory of the Gradle project. The current plugin version (2.x), introduced in Code Insight 2020 R3, scans only the project
build directory. Refer to the Gradle documentation for instructions on how to include dependencies as a part of build
directory. An example install command for including dependencies might be:

task copyToLib(type: Copy) { into "$buildDir/output/lib" from configurations.runtime }

For this task, use the following command to run the scan agent from the Gradle application project:

gradle build copyToLib code-insight-scan
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 51

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Package Managers and Build Tools
Maven Plugin
Maven is a tool that simplifies the building and management of Java-based projects. The Code Insight Maven plugin allows
you to scan an application project during its build on Maven without disrupting the established build process. Once
scanned, the codebase can be analyzed in the Code Insight user interface. The Maven plugin makes it easy to incorporate
scanning and analysis into your development workflow.

For more information, refer to the following:

• More About the Maven Plugin

• Prerequisites for the Maven Plugin

• Installing and Configuring the Maven Plugin

• Cleaning the Application Project

• Running the Maven Goal for the Scan

More About the Maven Plugin
The Maven plugin scans only the following items:

• Direct dependencies of a project (see also Important Note About Scanning Dependencies)

• Transitive dependencies of a project (see also Important Note About Scanning Dependencies)

• Build folder containing the application jars

The plugin creates a Maven goal called code-insight-scan, which will be executed along with the install phase of the build
cycle to get inventory details, as described later in Running the Maven Goal for the Scan.

Prerequisites for the Maven Plugin
Before you install and configure the Code Insight Maven plugin, ensure that the following prerequisites are met:

• Maven and JDK 1.8 are installed.

• %MAVEN_HOME%/bin is configured and added to the path environment variable. (This prerequisite avoids SSL
certification issues.) You can always check your Maven installation by running mvn -v.

• All Code Insight prerequisite tasks for plugins have been performed, as described in Preparing to Use the Plugins.

Installing and Configuring the Maven Plugin
Use the following steps to install and configure the Code Insight Maven plugin.
52 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Package Managers and Build Tools
Task To install and configure the Code Insight Maven plugin, do the following:

1. From the CodeInsightversionPlugins.zip file that was downloaded from the Product and License Center, extract
the Maven plugin subdirectory (code-insight-maven-plugin) to a location on your local disk. The recommended
location to which to extract this subdirectory is the application project directory.

2. Execute the following commands to install the plugin into the Maven local repository:

mvn install:install-file Dfile="$<PROJECT_DIRECTORY>/code-insight-maven-plugin/lib/code-insight-
maven-scan-<PLUGIN_VERSION>.jar" -DpomFile="$<PROJECT DIRECTORY>/code-insight-maven-plugin/lib/
pom.xml" -DgroupId=com.flexnet.maven -DartifactId=code-insight-maven-scan -
Dversion=<PLUGIN_VERSION> -Dpackaging=jar

mvn install:install-file -Dfile="$<PROJECT_DIRECTORY>/code-insight-maven-plugin/lib/codeinsight-
agent-<AGENT_VERSION>.jar" -DgroupId=com.flexnet.codeinsight -DartifactId=codeinsight-agent -
Dversion=<AGENT_VERSION> -Dpackaging=jar

Note the following variables:

• $<PROJECT DIRECTORY> is your application project directory (or the local directory to which you extracted the
plugin).

• <PLUGIN_VERSION> is the latest version of the code-insight-maven-scan jar file.

• <AGENT_VERSION> is the latest version of the codeinsight-agent jar file.

3. Add the following information to your application pom.xml file. Refer to Plugin and Code Insight Server Settings for a
description of the values you need to provide for the plugin and fnciServerSettings sections.

<plugin>
 <groupId>com.flexnet.maven</groupId>
 <artifactId>code-insight-maven-scan</artifactId>
 <version>latest_codeinsight_maven_scan_jar_version</version>
 <inherited>false</inherited>
 <executions>
 <execution>
 <phase>install</phase>
 <goals>
 <goal>code-insight-scan</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <fnciServerSettings>
 <fnciServer>server_url</fnciServer>
 <fnciAuthToken>Bearer server_authentication_token_value</fnciAuthToken>
 <fnciProjectName>codeinsight_project_name</fnciProjectName>
 <alias>scan_agent_alias<alias>
 <pluginRootPath>plugin_root_path</pluginRootPath>
 <pluginProjectName>plugin_project_name</pluginProjectName>
 <pluginDescription>any_plugin_description</pluginDescription>
 <pluginPathPrefix>plugin_path_prefix</pluginPathPrefix>
 </fnciServerSettings>
 </configuration>
</plugin>
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 53

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Package Managers and Build Tools
Plugin and Code Insight Server Settings

The following describes the settings that you need to define in the plugin and fnciServerSettings sections of the
information you are adding to the application pom.xml file (as described in Step 3 of the previous procedure).

Table 2-2 • Code Insight Server Settings in the Application “pom.xml” File

Setting Description

version The version of the code-insight-maven-scan-<VERSION>.jar file included with
the current plugin (for example, 1.0.2).

fnciServer (Required) The URL path to the Code Insight server in the following format:

http://<CODE_INSIGHT_SERVER_HOST_NAME>:<PORT_NUMBER>/codeinsight/

fnciAuthToken (Required) The JSON Web Token (JWT) used to authorize user access to the Code
Insight functionality. Generate this token using the Code Insight Web UI and then
copy and paste it here. Be sure to include the command “Bearer” followed by the
token value, as in the example:

Bearer eyJhbGciOiJIUzUxMiJ9.eyJzdWIiOiJhZG1pbiIsInVzZXJJZCI6MSwia

For information about generating this token, see Providing an Authorization
Token.

fnciProjectName (Required) The name of the Code Insight project created on the Code Insight
server for your application codebase scans.

alias A name that you define for the scan-agent plugin. The alias is used to represent
the “container” (scan root) under which all the files scanned in this instance will
be listed in the API output and in the file tree in the Analysis Workbench. This
name must be unique within the project.

pluginRootPath Currently not used.

pluginProjectName (Optional) The name of the application project being scanned. This name will
appear, along with the Code Insight project name, in the Last Scan field on the on
the Summary tab for the project in the Code Insight user interface. It provides a
reference to help a reviewer or developer identify what codebase was scanned.

pluginDescription (Optional) A description of the application project being scanned. This text will
appear in the Description field on the Summary tab for the project in the Code
Insight user interface.

pluginPathPrefix (Optional) The path prefix for the codebase files being scanned. This prefix is used
to reference the codebase file paths on the Project report generated from the
Summary tab for the project in the Code Insight user interface.
54 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Binary Repositories
Important Note About Scanning Dependencies

Previous versions (1.x) of the Maven scan-agent plugin scanned both the dependencies section and the
${project.build.directory} of the Maven project. The current plugin version (2.x), introduced in Code Insight 2020 R3, scans
only the ${project.build.directory}. Refer to the Maven documentation for instructions on how to include dependencies as a
part of build directory. An example install command for including dependencies might be:

maven-dependency-plugin install copy-dependencies ${project.build.directory}/project-dependencies

Cleaning the Application Project
During a build, Maven can cache an extensive amount of output, which, in turn, can have a negative impact on the
performance of the Maven plugin. Therefore, before you run the Maven goal for the Code Insight scan, it is recommended
that you clean the application project, a process that clears the cache of the artifacts of previous builds.

Task To clean the application project, do the following:

Execute the following command:

mvn clean

Running the Maven Goal for the Scan
After you clean the application project, you can run the code-insight-scan Maven goal, which will perform a Code Insight
scan on the codebase.

Task To execute the goal that runs the Code Insight scan, do the following:

To build the application (and run the Code Insight scan as part of the build cycle), execute the following command:

mvn install

Alternatively, to execute the Code Insight scan only, run the specific goal:

mvn code-insightscan:code-insight-scan

Plugins for Binary Repositories
Currently, Code Insight support for scan integration with binary repositories includes the JFrog Artifactory Plugin.

JFrog Artifactory Plugin
JFrog Artifactory is a binary repository manager where third-party artifacts are stored. The Artifactory repository is
centralized, so all developers use the same repository to access artifacts, which provides faster access, control, and
security of binary artifacts. The Artifactory plugin provided by Code Insight scans an Artifactory repository and sends the
results, as inventory, to the Code Insight server for review, management, and remediation through the user interface.
Because Artifactory can contain several repositories, the plugin can support a multiple-repository scan, generating
inventory for each repository in a separate Code Insight project.
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 55

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Binary Repositories
The following topics describe how to install and use the Artifactory plugin:

• Prerequisites for the Artifactory Plugin

• Installing the Artifactory Plugin

• Scanning an Artifactory Repository Using a Cron Job

• Scanning an Artifactory Repository Using REST API

• Scan Results

Prerequisites for the Artifactory Plugin
Before installing and using the Artifactory plugin, ensure that the following prerequisites are met:

• Your site uses JFrog Artifactory PRO 5.x or higher.

• All Code Insight prerequisite tasks for plugins have been performed, as described in Preparing to Use the Plugins.

• You have write access for the etc/plugins directory on the Artifactory server. If you do not have access to that
directory, be sure to obtain access before attempting to install the plugin.

Installing the Artifactory Plugin
The Artifactory plugin is available from the Product and License Center. Use the following steps to install the plugin.

Task To install the Artifactory plugin, do the following:

1. Download and extract the Artifactory plugin subfolder from the CodeInsightversionPlugins.zip file. For more
information, see Downloading Plugins.

2. Copy the following directory and files into the <ARTIFACTORY_HOME>/etc/plugins directory on the Artifactory server:

• libs directory

• code-insight-scan-plugin.groovy

• code-insight-scan.plugin.props

3. Define the properties in the code-insight-scan.plugin.props file:

repoKeys=<REPOSITORY_PATH1>/,<REPOSITORY_PATH2>
codeinsight.server= http(s)://<HOST>:<PORT>/
codeinsight.auth.token=Bearer <JWT_TOKEN>
codeinsight.project.name= <PROJECT_NAME1>,<PROJECT_NAME2>
plugin.root.path=<./artifactory-pro-5.10.2/etc/plugins>
plugin.project.description= will be set by plugin, can be left blank
isScanCronJobEnabled=disabled
isPluginEnabled=enabled
cronJobTime=1 * * * * ?

artifactory_url= http(s)://<HOST>:<PORT>/ARTIFACTORY/
56 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Binary Repositories
4. Determine if you want to execute the scan with a cron job or by calling REST API:

• To execute a scan with a cron job, see Scanning an Artifactory Repository Using a Cron Job.

• To execute a scan by calling REST API, see Scanning an Artifactory Repository Using REST API.

Scanning an Artifactory Repository Using a Cron Job
You can use the following procedure to schedule an Artifactory repository scan to run periodically.

Task To execute an Artifactory scan using a cron job, do the following:

1. Open the code-insight-scan.plugin.props file.

2. Modify the property isScanCronJobEnabled=disabled to isScanCronJobEnabled=enabled.

3. Set the cronJobTime property to schedule the scan. Use the following diagram and the example it provides to help you
set the property.

4. Restart the Artifactory server.

Scanning an Artifactory Repository Using REST API
You can call REST API to scan all Artifactory repositories listed in the code-insight-scan.plugin.props file or to scan a
specific repository instead. The following topics describe how to scan repositories using REST API:

• Requirements When Using REST API to Scan Artifactory Repositories

• Scanning All Artifactory Repositories

• Scanning a Specific Artifactory Repository

• Reloading the Artifactory Plugin

Requirements When Using REST API to Scan Artifactory Repositories
The following lists the requirements for using REST APIs to scan Artifactory repositories.
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 57

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Binary Repositories
Prerequisite for Scanning Repositories

As prerequisite for using REST API to scan Artifactory repositories, ensure that the properties in code-insight-
scan.plugin.props are properly defined according to the instructions in Installing the Artifactory Plugin and according to
any specific instructions listed in the procedures.

Required Option When Using the “https” Protocol

The REST API calls used in the next sections use the http protocol. To use the https protocol instead, be sure to include the
option -k in the call:

curl -X POST -u<USER_NAME>:<PASSWORD> -k "https://<ARTIFACTORY_HOST>:8081/artifactory/api/plugins/
execute/CodeInsightScan"

Scanning All Artifactory Repositories
The following command scans all repositories listed in the code-insight-scan.plugin.props file.

Task To scan all repositories, do the following:

Use the following API call to scan all repositories:

curl -X POST -u<USER_NAME>:<PASSWORD> "http://<ARTIFACTORY_HOST>:8081/artifactory/api/plugins/
execute/CodeInsightScan"

Scanning a Specific Artifactory Repository
The following procedure scans a specific repository.

Task To scan a specific repository, do the following:

1. Ensure that the following properties are also defined in the code-insight-scan.plugin.props file:
codeinsight.server, codeinsight.auth.token, plugin.root.path, isPluginEnabled, and artifactory_url.

2. Use the following API call to scan the repository:

curl -X POST -u<USER_NAME>:<PASSWORD> "http://<ARTIFACTORY_HOST>:8081/artifactory/api/plugins/
execute/
CodeInsightSingleScan?params=repoKey=<REPOSITORY_NAME>%7cproject=<CODEINSIGHT_PROJECT_NAME>"

Reloading the Artifactory Plugin
If you have downloaded an updated version of the Code Insight plugin for Artifactory, you can use this REST API call to
reload the plugin before running a scan:

curl -X POST --u<USER_NAME>:<PASSWORD> http://localhost:8081/artifactory/api/plugins/reload
58 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Container Platforms
Scan Results
When the scan completes, inventory is created in the corresponding Code Insight project. The Scan Status section on the
Summary tab for the project provides information about the scan.

Similarly in Artifactory, information about the scan, such as the Code Insight project name, the scan status, and a link to the
Code Insight project inventory are provided for each repository scanned. For more information about using plugins in
Artifactory, see the following site:

https://www.jfrog.com/confluence/display/RTF/User+Plugins

Plugins for Container Platforms
Currently, Code Insight support for scan integration with a container platforms includes the Docker Images Plugin.

Docker Images Plugin
Docker is a tool that packages applications and their dependencies into containers, which are comprised of static images.
These images are themselves comprised of layers. Code Insight Docker Images scan-agent enables the scanning of Docker
images on a Docker server and sends the results as inventory to the Code Insight server for review, management, and
remediation.

Note • It is recommended that Docker images be scanned on a development, test, or staging server before being pushed to a
production instance as part of the DevOps process flow.

The following topics describe how to install and launch the Docker Images plugin:

• Prerequisites for the Docker Images Plugin

• Installing the Docker Images Plugin

• Launching the Docker Images Plugin

Prerequisites for the Docker Images Plugin
Before you install and configure the Docker Images plugin, ensure that the following prerequisites are met:

• The Docker server must be installed and configured properly in your environment. The Docker plugin can only be
executed on a server that already has an authenticated connection to the Docker server.

Note • The Docker plugin issues Docker commands without prompting for credentials.

• All Code Insight prerequisite tasks for plugins have been performed, as described in Preparing to Use the Plugins.

• A minimum of 2GB of heap space is allocated on the Docker server, which must be configured with a 64-bit JRE to
support that amount of heap space.
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 59

https://www.jfrog.com/confluence/display/RTF/User+Plugins

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Container Platforms
• The plugin sets the maximum JVM heap size to 4GB by default, a size sufficient for most images. However, if you are
receiving errors due to heap size, you can increase this maximum by setting a higher -Xmx value in the last line of code
in the code-insight-docker-plugin.sh file, located in the plugin folder. (You can also add a minimum heap size,
using the -Xms option, if needed.) The following provides an example of how you might update this line to increase the
maximum heap size:

java -Xmx10240m -Xms1024m -jar $DEBUG code-insight-docker-plugin.jar $*

Note • If you are using a 64-bit JVM, you can increase the heap size to the size you need. If you are using a 32-bit JVM, you
are limited to 4GB.

• The Docker image you are scanning must already be downloaded to your system.

Installing the Docker Images Plugin
Use the following procedure to install the Docker Images plugin.

Task To install Docker Images plugin, do the following:

1. Extract the Docker Images plugin subfolder from the CodeInsightversionPlugins.zip file, and copy it the Docker
server. For more information, see Downloading Plugins.

2. Open the code-insight.docker.props file in a text editor:

//required
codeinsight.server=http://127.0.0.1:8888
codeinsight.auth.token=Bearer
eyJhbGciOiJIUzUxMiJ9.eyJzdWIiOiJhZG1pbiIsInVzZXJJZCI6MSwiaWF0IjoxNTExNDM1MTk4fQ.dHItJjJ2c89Dg5cVLvf
GR3fwJcR3yAlVE6k98dRZTdp3h6McDgv_PloVVE88eJ2GOG0tNDOnhU0ShDLUzdu3Pg
codeinsight.project.name=inv2
plugin.alias.name=scan-agent alias
plugin.root.path=/Users/ranimathur/Work/Scratch/
//optional
plugin.project.name=plugin project name
plugin.project.description=plugin project description
plugin.path.prefix=$demo_workspace/

3. Edit the code-insight.docker.props file to specify the following information:

• codeinsight.server (required)—The URL path to the Code Insight server.

• codeinsight.auth.token (required)—The JSON Web Token (JWT) used to authorize user access to the Code
Insight functionality. Generate this token using the Code Insight Web UI and then copy and paste it here. Be sure
to include the command “Bearer” followed by the token value, as in the example:

Bearer eyJhbGciOiJIUzUxMiJ9.eyJzdWIiOiJhZG1pbiIsInVzZXJJZCI6MSwia

For more information about generating this token, see Providing an Authorization Token.

• codeinsight.project.name (required)—The name of the Code Insight project.
60 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Plugins for Container Platforms
• codeinsight.alias.name (required)—A name that you define for the scan-agent plugin. The alias is used to
represent the “container” (scan root) under which all the files scanned in this instance will be listed in the API
output and in the file tree in the Analysis Workbench. This name must be unique within the project.

• plugin.root.path (required)—The root path where the Docker plugin will be executing. This path must have
writable privileges for the user executing the plugin.

• plugin.project.name (optional)—A descriptive name to the project being scanned, that may be different from
the project name specified in the Code Insight server. This text will appear on the Summary tab for the project in
the Code Insight user interface.

• plugin.project.description (optional)—A description of the project being scanned. This text will appear on the
Summary tab for the project in the Code Insight user interface.

• plugin.path.prefix (optional)—The path prefix of the image being scanned. This prefix will be used to reference
the file paths of the codebase on the Project Inventory page of the Code Insight GUI.

Launching the Docker Images Plugin
Use the following procedure to launch the Docker Images plugin to scan an image.

Note • The Docker plugin must be launched whenever the Docker image is updated. The Docker plugin can be included in a
script, so the image is scanned regularly.

Task To launch the Docker Images plugin, do the following:

Issue the following command to launch the Docker plugin from the command line:

% code-insight-docker-plugin.sh -image <DOCKER_IMAGE_NAME>

The <DOCKER_IMAGE_NAME> is the name given to the image that Code Insight is to scan.

Note • Only the downloaded Docker image is scanned.

As it runs, the Docker plugin does the following:

• Contacts the Code Insight server to validate the connection and download a scanner.

• Extracts the Docker image.

• Scans the extracted Docker image contents.

The plugin sends the inventory results to Code Insight configured.
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 61

Chapter 2 Installing and Configuring Standard Plugins
Generic Scan-Agent Plugin
Generic Scan-Agent Plugin
The generic scan-agent plugin is an example ready-to-use plugin that is available in the codeinsight-generic-version
toolkit installed with the standard Code Insight plugins. It can run as a standalone scan-agent plugin (as described in this
section), enabling you to scan any file system instead of being restricted to specific Engineering systems, as you are with
the standard scan-agent plugins. The plugin can also easily integrate with certain Engineering systems to perform scans as
part of a build process, such a TeamCity or GitLab build process, or serve as a basis for developing your own scan-agent
plugin (see the Developing Custom Plugins chapter).

The following describe the basics of using the generic scan-agent plugin as a standalone scan-agent:

• Prerequisites for the Generic Scan-Agent Plugin

• Running the Generic Scan-Agent Plugin

• Enabling the Generic Scan-Agent Plugin to Detect Transitive Dependencies

Prerequisites for the Generic Scan-Agent Plugin
The following prerequisites are required to use the Code Insight generic scan-agent plugin:

• A minimum of 4 GB Java heap space required for scanning (allocated to the JVM under which the scan-agent plugin
will be executing)

• 64-bit Java Runtime Environment JRE 8 or later

• Code Insight Core Server

• Code Insight prerequisites described in Preparing to Use the Plugins

• Internet access (recommended but not required):

• If Internet access is available, the scan-agent will periodically download the latest security vulnerability
definitions from the National Vulnerability Database (NVD).

• If Internet access is not available, then the default signatures that were released with the latest version of Code
Insight will be used.

Running the Generic Scan-Agent Plugin
The generic scan-agent plugin can scan any file system of your choice, without your being limited to a specific build system
as you are with the standard scan-agent plugins.

The scan returns the results back to Code Insight, where the discovered inventory items for your project can be reviewed
automatically via policies or manually reviewed by various stakeholders. Security alerts with corresponding email
notifications will be generated for any inventory items with new security vulnerabilities.

Note • Note that the first time a scan is performed using the generic scan-agent plugin, a data snapshot is downloaded from
the National Vulnerability Database (NVD) to generate an index of the latest security vulnerabilities.
62 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Generic Scan-Agent Plugin
Task To run the generic scan-agent plugin, do the following:

1. Download and extract the contents of the CodeInsightversionPlugins.zip file, as described in the previous section,
Downloading Plugins.

2. Locate the code-insight-agent-sdk-generic/generic-plugin-binary folder and copy it to your hard drive.

3. If you want the generic scan-agent plugin to detect transitive dependencies during scans, follow the procedure
described in Enabling the Generic Scan-Agent Plugin to Detect Transitive Dependencies to configure this capability.

4. To execute a scan using the plugin, run the following from a command line as a Java application:

java -Dflx.agent.logLevel=info -jar codeinsight-generic-<VERSION>.jar -server
"<CODEINSIGHT_SERVER_HOSTNAME>:<PORT>/<CODEINSIGHT_SERVER_PATH>" -token "Bearer <JWT_TOKEN>" -
proj "<CODEINSIGHT_PROJECT_NAME>" -root "</path/to/the/codebase>" -scandirs "</path/to/the/
codebase/PROJECT>" -alias “<SCAN_AGENT_ALIAS>” -host “<SCAN_AGENT_HOST”

Replace the following variables with the appropriate information:

• <VERSION>—The build version of the .jar file used to run the scan agent. The version is shown in the name of
.jar file, which is located in the code-insight-agent-sdk-generic/generic-plugin-binary folder.

• <CODEINSIGHT_SERVER_HOSTNAME>:<PORT>/<CODEINSIGHT_SERVER_PATH>—The URL for the Code
Insight Core Server (for example, http://1.1.1.1:8888/codeinsight)

• <JWT_TOKEN>—Your JSON Web Token (JWT) used to authorize user access to the Code Insight functionality.
Generate this token using the Code Insight Web UI and then copy and paste it in this field. For more information,
see Providing an Authorization Token.

• <CODEINSIGHT_PROJECT NAME>—The project you created in Code Insight to capture the inventory.

• <path/to/the/codebase>—The root path for the codebase to be scanned.

• </path/to/the/codebase/PROJECT>—The specific directories to be scanned.

• <SCAN_AGENT_ALIAS>—A name that you define for the scan-agent plugin. The alias is used to represent the
“container” (scan root) under which all the files scanned in this instance will be listed in the API output and in the
file tree in the Analysis Workbench. This name must be unique within the project.

• <SCAN_AGENT_HOST>—(Optional) A user-defined name for the instance where the scan-agent plugin is
configured to run scans. This property along with the alias property will remain unchanged for each subsequent
rescan.

Although optional in general, this value is required if you are running the scan in a dynamic host environment.
See Note About Rescans Performed by 2.0 Plugins.

Alternatively, you run a scan using one of two scripts, run_scan.bat or run_scan.sh, provided with the generic scan-
agent plugin. The scripts located in the generic-plugin-binary folder.
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 63

Chapter 2 Installing and Configuring Standard Plugins
Note About Rescans Performed by 2.0 Plugins
Enabling the Generic Scan-Agent Plugin to Detect Transitive
Dependencies

Use this procedure to enable the detection of transitive dependencies during scans performed by the generic scan-agent
plugin. If you do not create and deploy the file described in this procedure, no transitive-dependency detection is
performed.

Task To enable the generic scan-agent plugin to detect transitive dependencies, do the following:

1. Create a text file whose content contains the following properties. These properties enable the various Code Insight
analyzers to detect transitive dependencies during a scan:

flx.enable.gradle.file.transitive.dependency=true
flx.enable.npm.transitive.dependency=true
flx.enable.nuget.transitive.dependency=true
flx.enable.java.transitive.dependency=true

If you do not want a specific analyzer to detect transitive dependencies, set the boolean value for its corresponding
property to false (or remove the property from the file content). See the table below for more information.

2. Save the file as codeaware.properties.

3. Copy the file to the code-insight-agent-sdk-generic/generic-plugin-binary folder (where the codeinsight-
generic-build.jar file is located).

Note About Rescans Performed by 2.0 Plugins
Starting with Code Insight version 2020 R3, scan agent plugins support an alias name. The alias name is used to uniquely
identify a remote scan agent for a given project as well as differentiate the codebase scanned via the agent from other
project codebase files. Alias names are unique within a given project and cannot be shared across multiple scan agents.

In general, a rescan performed by v2.0 of the scan-agent plugin uses the same alias and hostname that the previous scan
used. However, in a dynamic host environment (such as is supported by CI tools, where hosts are dynamically allocated as
needed for cloud or linked builds), the instance on which a rescan is run might be different from the instance used in the
previous scan, in turn causing the rescan to fail.

Table 2-3 • Properties Enabling the Generic Scan-Agent Plugin to Detect Transitive Dependencies During Scans

Package Analyzer Property (with Boolean value) to Enable Transitive Dependency Detection

Gradle flx.enable.gradle.file.transitive.dependency={true | false}

NPM flx.enable.npm.transitive.dependency={true | false}

NuGet flx.enable.nuget.transitive.dependency={true | false}

Java (pom.xml) flx.enable.java.transitive.dependency={true | false}
64 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 2 Installing and Configuring Standard Plugins
Note About Rescans Performed by 2.0 Plugins
Therefore, for those v2.0 plugins used for Engineering platforms that support dynamic host environments, you must
provide a value for the new “host” property in the plugin configuration. This value should be a user-defined name for the
host instance on which the scan will be run. The value will then remain the same even if the instance used for a rescan is
different from the one used in the previous scan.

This property is currently available for the Jenkins, Bamboo, Azure DevOps, and the generic scan-agent plugins.
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 65

Chapter 2 Installing and Configuring Standard Plugins
Note About Rescans Performed by 2.0 Plugins
66 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

3

Developing Custom Plugins
While Code Insight provides standard scan-agent plugins that are ready to deploy for codebase scanning on remote
Engineering systems, it also provides a Scan Agent toolkit that implements the Code Insight Scan Agent Framework, which
enables you to write a custom scan-agent plugin that integrates with your development ecosystem. The following sections
provide guidance in creating a scan-agent plugin:

• Scan Agent Framework

• Downloading the Scan Agent Toolkit

• Contents of the Scan Agent Toolkit

• Writing a Custom Scan-Agent Plugin

• Deploying a Custom Scan-Agent Plugin

Scan Agent Framework
The Scan Agent Framework comprises a set of Java APIs that provide the ability to scan codebases at various phases of the
development process on remote Engineering systems, within the appropriate context. The Framework provides the
backbone for all the processing that a user-created scan-agent plugin requires.

The source code for a generic scan-agent plugin is provided in the toolkit to demonstrate the API flow. By creating a plugin
that takes advantage of the Scan Agent Framework, you can tailor Code Insight’s powerful scanning capabilities to your
computing environment and incorporate them into your business process flow.

The following describes the Scan Agent Framework:

• Features Provided by the Framework

• Available Classes and Methods in the Framework

• Property Settings
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 67

Chapter 3 Developing Custom Plugins
Scan Agent Framework
Features Provided by the Framework
The Scan Agent Framework provides the following functionality for the custom scan-agent plugin:

• Tests the connection from your plugin to the Code Insight server and provides error handling with error messages.
These messages include the Code Insight version, any invalid URLs passed, invalid user access tokens, and invalid
project names.

• Passes environmental and system properties.

• Downloads and installs a remote scanner on the Engineering system where the scan-agent plugin is executed.

• Invokes the scan called for in the plugin, and sends the scan results back to Code Insight.

• Processes and displays logging content to a system console in the scan-agent plugin environment.

• Generates a verbose scanner log for further information and debugging of failed scans.

• Automatically uploads the output of the plugin to the Code Insight server, where it is then available for inventory
review, management, and security alerting via the Code Insight user interface.

Available Classes and Methods in the Framework
The Scan Agent Framework provides the following classes and methods that can be used to build a scan plugin:

Table 3-1 • Available Classes and Methods

Class Description Settings/Methods

ExecutionContext Stores all the information
needed for a scan to run and
publish results to Code
Insight server. This class
should be initialized only by
calling the
ExecutionContext.getInst
ance(...) method.

Methods:

ExecutionContext getInstance(Properties props,
PrintStream logger)

Initializes ExecutionContext for the current scan.

Parameters:

props: Properties required to scan and publish results

logger: Output stream where all the useful logging will be sent; if
logger is null, all logging is redirected to console output. For more
information about parameters for this class, see Property Settings.
68 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 3 Developing Custom Plugins
Scan Agent Framework
Property Settings
The following table lists property settings that you can update:

ScanExecutor Executes the scan and the
publish results request
made by client plugins.

Note • This class requires a
valid ExecutionContext
instance to be able to
operate.

Methods:

• ScanExecutor(ExecutionContext executionContext)

A constructor.

• String testConnection()

Validates the user authorization token and the connection to
the Code Insight server.

Valid returned strings:

• Success

• Server Not Found

• Invalid Auth Token Found

• User not authorized to access the project

• String scanCodebase(List<String> paths)

Updates the embedded scanner if updates are found, scans
the paths provided as input, and publishes the results to the
Code Insight server as provided for ExecutionContext.

Parameters:

paths: list of absolute paths to be scanned

Return:

SUCCESS or FAILURE as a string. See the logger output stream
for more details.

Table 3-2 • Property Settings

Property Required/Optional? Description

codeinsight.server Required The Code Insight server URI (for example, http(s)://
your.codeinsight.server:port/).

codeinsight.auth.token Required Authorized user token generated in the Code Insight user
interface.

codeinsight.project.name Required The Code Insight project name where all the inventory
information will be published.

plugin.root.path Required The local root path that can be replaced with path prefix.

Table 3-1 • Available Classes and Methods

Class Description Settings/Methods
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 69

Chapter 3 Developing Custom Plugins
Scan Agent Framework
plugin.project.name Optional The name of the plugin project (for example, “Codeinsight
Jenkins”).

plugin.project.description Optional The plugin’s instance name/build number or tag that can be
sent to the Code Insight server.

plugin.path.prefix Optional Prefix to be added to file paths for display to the user. For
example, it could be the URL for a Jenkins workspace.

plugin.alias.name Required A name that you define for the scan-agent plugin. The alias is
used to represent the “container” (scan root) under which all
the files scanned in this instance will be listed in the API output
and in the file tree in the Analysis Workbench. This name must
be unique within the project.

plugin.proxy.host Required when using
proxy server

The IP address or Hostname of the proxy server.

plugin.proxy.port Required when using
proxy server

The port used for the proxy server.

plugin.proxy.user Required when using
proxy server

The user name used to authenticate the proxy.

plugin.proxy.password Required when using
proxy server

The password used to authenticate the proxy.

plugin.has.proxy Required when using
proxy server

The value indicating whether the proxy is enabled for the
plugin:

• true enables the proxy.

• false disables it.

plugin.host Optional (Optional) A user-defined name for the instance where the
scan-agent plugin is configured to run scans. This property
along with the alias property will remain unchanged for each
subsequent rescan.

Although optional in general, this value is required if you are
running the scan in a dynamic host environment. See Note
About Rescans Performed by 2.0 Plugins.

Table 3-2 • Property Settings (cont.)

Property Required/Optional? Description
70 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

Chapter 3 Developing Custom Plugins
Downloading the Scan Agent Toolkit
Downloading the Scan Agent Toolkit
Use the following procedure to download and extract th Scan Agent toolkit.

Task To download the Scan Agent toolkit, do the following:

1. Access the Revenera Community site and sign in:

https://community.revenera.com

2. In Find My Product, click FlexNet Code Insight.

3. Under Product Resources on the right, click Download Product and Licenses.

4. Once in the Product and License Center, navigate to Your Downloads and select FlexNet Code Insight. The
Download Packages page is displayed.

5. Select the version of Code Insight from the list. The Downloads page appears.

6. Select the Code Insight Plugins version, and download its associated CodeInsightversionPlugins.zip file.

7. When the download finishes, extract the subfolder code-insight-agent-sdk-generic-plugin, which contains the
toolkit.

Ensure that you extract the entire subfolder into your installation directory, so you have all necessary files to create
the plugin.

Contents of the Scan Agent Toolkit
The contents of the Scan Agent toolkit includes the following:

• /readme.txt: Instructions on how to use the SDK.

• /lib: All dependent jar files needed to run the plugin.

• /generic-plugin-binary: An example binary—the generic scan-agent plugin—developed with the Scan Agent
Framework.

• /generic-plugin-source: The source code for the example binary.

• /generic-plugin-source/pom.xml+assembly.xml: Maven build files used to compile and build the plugin.

Writing a Custom Scan-Agent Plugin
Writing a custom scan-agent plugin involves the following the following tasks:

• Task 1— Review the example generic scan-agent plugin for its code structure and build configuration. (In essence, you
can use this plugin as a template for creating your own.)

• Task 2—Identify the Engineering system with which you will be integrating the scan agent. (This section and the next
will use Integration Server as an example Engineering system).
Code Insight 2020 R4 Plugins Guide FNCI-2020R4-PG00 Company Confidential 71

https://community.revenera.com

Chapter 3 Developing Custom Plugins
Deploying a Custom Scan-Agent Plugin
• Task 3—Using the APIs provided by the Integration Server, write code to pull in all the codebase files that you want to
scan into a single folder. This will be the folder path that you will be passing to the plugin.

• Task 4—Use the Scan Agent Framework APIs to connect to the Code Insight server.

• Task 5—Scan the folder that contains the desired code base files on the Integration Server.

Note • The plugin will typically execute on the same computer system as the Integration Server.

Deploying a Custom Scan-Agent Plugin
Deployment of a custom scan-agent plugin involves the following tasks:

• Task 1—Install and configure the Code Insight server.

• Task 2—Ensure you adhere to the system prerequisites for the generic scan-agent plugin. See Prerequisites for the
Generic Scan-Agent Plugin.

• Task 3—Invoke the remote scans on the Integration Server, and review the results in the Code Insight user interface.
72 Company Confidential FNCI-2020R4-PG00 Code Insight 2020 R4 Plugins Guide

	Code Insight 2020 R4
	Legal Information

	Contents
	Code Insight 2020 R4 Plugins Guide
	About Scan-Agent Plugins
	Contents of this Book
	Product Support Resources
	Contact Us

	Installing and Configuring Standard Plugins
	About Scan-Agent Plugins
	Overview of Available Plugins
	Important: Plugin Upgrade to Version 2.0 in Code Insight 2020 R3

	Preparing to Use the Plugins
	Providing an Authorization Token
	Downloading Plugins
	Plugins for Integrated Development Environments (IDEs)
	Eclipse Plugin
	Prerequisites for the Eclipse Plugin
	Installing the Eclipse Plugin
	Configuring the Eclipse Plugin
	Running a Scan within Your Eclipse Environment
	Uninstalling the Eclipse Plugin

	Visual Studio Plugin
	Prerequisites for the Visual Studio Plugin
	Installing the Visual Studio Plugin
	Configuring the Visual Studio Plugin
	Configuration Using Visual Studio IDE
	Configuration Using MSBuild

	Executing a Scan
	Scan Execution Using Visual Studio IDE
	Scan Execution Using MSBuild

	Disabling or Uninstalling the Visual Studio Plugin

	Plugins for Continuous Integration (CI) Tools
	Azure DevOps Extension
	Prerequisites for the Azure DevOps Extension
	Installing the Azure DevOps Extension
	Adding a Scan Task to Your Azure DevOps Agent Job

	Bamboo Plugin
	Prerequisites for the Bamboo Plugin
	Installing and Configuring the Bamboo Plugin

	GitLab Plugin
	Prerequisites for the GitLab Plugin
	Installing the Generic Scan Agent on GitLab Runner
	Configuring the CI/CD Pipeline to Run a Scan
	Executing the Build

	Jenkins Plugin
	Prerequisites for the Jenkins Plugin
	Setting Heap Size for the Jenkins Plugin
	Setting Up the Code Insight Jenkins Plugin
	Support for the Jenkins Pipeline
	Providing the Pipeline Script for the Scan Step
	Pipeline Code Examples for Running the Scan

	Scan Scheduler Plugin for Jenkins
	TeamCity Plugin
	Prerequisites for TeamCity Plugin
	Installing the Generic Scan-Agent on the Team City Build Agent
	Configuring a Build to Run a Code Insight Scan
	Executing the Build

	Plugins for Package Managers and Build Tools
	Apache Ant Plugin
	Prerequisites for the Apache Ant Plugin
	Configuring the Apache Ant Plugin
	Executing the Scan

	Gradle Plugin
	Prerequisites for the Gradle Plugin
	Installing and Configuring the Gradle Plugin

	Maven Plugin
	More About the Maven Plugin
	Prerequisites for the Maven Plugin
	Installing and Configuring the Maven Plugin
	Cleaning the Application Project
	Running the Maven Goal for the Scan

	Plugins for Binary Repositories
	JFrog Artifactory Plugin
	Prerequisites for the Artifactory Plugin
	Installing the Artifactory Plugin
	Scanning an Artifactory Repository Using a Cron Job
	Scanning an Artifactory Repository Using REST API
	Requirements When Using REST API to Scan Artifactory Repositories
	Scanning All Artifactory Repositories
	Scanning a Specific Artifactory Repository
	Reloading the Artifactory Plugin

	Scan Results

	Plugins for Container Platforms
	Docker Images Plugin
	Prerequisites for the Docker Images Plugin
	Installing the Docker Images Plugin
	Launching the Docker Images Plugin

	Generic Scan-Agent Plugin
	Prerequisites for the Generic Scan-Agent Plugin
	Running the Generic Scan-Agent Plugin
	Enabling the Generic Scan-Agent Plugin to Detect Transitive Dependencies

	Note About Rescans Performed by 2.0 Plugins

	Developing Custom Plugins
	Scan Agent Framework
	Features Provided by the Framework
	Available Classes and Methods in the Framework
	Property Settings

	Downloading the Scan Agent Toolkit
	Contents of the Scan Agent Toolkit
	Writing a Custom Scan-Agent Plugin
	Deploying a Custom Scan-Agent Plugin

