
Usage Intelligence 5.6.0
.NET SDK Developer Guide

Legal Information

Copyright Notice
Copyright © 2020 Flexera Software

This publication contains proprietary and confidential information and creative works owned by Flexera Software and its licensors, if any. Any use,
copying, publication, distribution, display, modification, or transmission of such publication in whole or in part in any form or by any means without the
prior express written permission of Flexera Software is strictly prohibited. Except where expressly provided by Flexera Software in writing, possession of
this publication shall not be construed to confer any license or rights under any Flexera Software intellectual property rights, whether by estoppel,
implication, or otherwise.

All copies of the technology and related information, if allowed by Flexera Software, must display this notice of copyright and ownership in full.

Intellectual Property
For a list of trademarks and patents that are owned by Flexera Software, see https://www.revenera.com/legal/intellectual-property.html. All other brand
and product names mentioned in Flexera Software products, product documentation, and marketing materials are the trademarks and registered
trademarks of their respective owners.

Restricted Rights Legend
The Software is commercial computer software. If the user or licensee of the Software is an agency, department, or other entity of the United States
Government, the use, duplication, reproduction, release, modification, disclosure, or transfer of the Software, or any related documentation of any kind,
including technical data and manuals, is restricted by a license agreement or by the terms of this Agreement in accordance with Federal Acquisition
Regulation 12.212 for civilian purposes and Defense Federal Acquisition Regulation Supplement 227.7202 for military purposes. The Software was
developed fully at private expense. All other use is prohibited.

Book Name: Usage Intelligence 5.6.0 .NET SDK Developer Guide

Part Number: FUI-0560-NETUG

Product Release Date: 10 November 2020

https://www.revenera.com/legal/intellectual-property.html

Contents
1 Usage Intelligence 5.6.0 .NET SDK Developer Guide. 5
Product Support Resources . 6

Contact Us . 7

2 Getting Started with the Usage Intelligence .NET SDK . 9
System Requirements . 9

Registering Your Product . 9

API Overview. 9

Importing the SDK Files. 10

Basic Integration Steps . 10

Next Steps . 13
Advanced Features . 13

3 SDK Configuration . 15
SDK Object Initialization . 15

Getting SDK Version Information. 16

Getting the Client ID . 16

Initializing the Configuration . 17

Single vs. Multiple Session Modes . 19

Opt-Out Mechanism. 20

Providing Product Data. 21
Product Details. 21

Setting Product Data . 21
Setting Product Edition. 22
Setting Product Language . 24
Setting Product Version . 25
Setting Product Build Number . 26

License Management . 27
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 3

Contents
Changing ReachOut on Autosync Setting . 30

Proxy Support . 31

4 Basic SDK Controls . 35
Starting the SDK. 35

Stopping the SDK . 36

Starting a Session . 38

Stopping a Session. 40

Caching and Synchronizing . 41
Forced Synchronization . 42

5 Feature / Event Tracking . 45
Tracking an Event . 46

Logging a Normal Event with a Numeric Field . 48

Logging a Normal Event with a String Field . 50

Logging a Custom Event . 53

6 ReachOut Direct-to-Desktop Messaging Service. 57
Automated Message Retrieval . 58

Manual Message Retrieval . 59
Checking for Manual ReachOut Messages of Any Type . 60
Checking for Manual ReachOut Messages of a Specified Type . 61

7 Exception Tracking . 65

8 License Management . 69
Client vs. Server Managed Licensing . 69

Checking the License Data of the Supplied License Key . 70

Setting the Current License to the Supplied License Key. 73

9 Custom Properties. 79
Setting Custom Property Data . 79

10 SDK Status Checks. 81
Getting the State of the Usage Intelligence Instance . 81

Testing the Connection Between the SDK and the Server . 82

11 Common Function Return Values . 85
4 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

1

Usage Intelligence 5.6.0 .NET

SDK Developer Guide
Usage Intelligence 5.6.0—a software usage analytics solution designed for distributed C/C++, .NET, Obj-C and native Java
applications on Windows, Macintosh, and Linux—provides deep insight into application usage. It enables you to see which
of your application’s features are used most and least often. Advanced reporting lets you filter by properties including
region, version, OS platform, and architecture to focus your roadmap development.

The Usage Intelligence 5.6.0 .NET SDK Developer Guide explains how to implement the .NET SDK.

Table 1-1 • Usage Intelligence 5.6.0 .NET SDK Developer Guide

Section Description

Getting Started with the
Usage Intelligence .NET SDK

Explains how to get started using Usage Intelligence .NET SDK.

SDK Configuration Explains how to create the Usage Intelligence SDK instance, initialize the
configuration, and other configuration tasks.

Basic SDK Controls Describes how to start and stop the SDK, and start and stop a session.

Feature / Event Tracking Explains how to track and log events.

ReachOut Direct-to-Desktop
Messaging Service

Explains how to create ReachOut messaging campaigns to deliver messages
or surveys directly to the desktop of users who are running your software.

Exception Tracking Describes how to collect runtime exceptions from your application.

License Management Explains how to maintain a license key registry on the Usage Intelligence
server in order to track license key usage and verify the status/validity of
license keys used on your clients.

Custom Properties Explains how to collect any custom value that is relevant to your specific
application.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 5

Chapter 1 Usage Intelligence 5.6.0 .NET SDK Developer Guide
Product Support Resources
Product Support Resources
The following resources are available to assist you with using this product:

• Revenera Product Documentation

• Revenera Community

• Revenera Learning Center

• Revenera Support

Revenera Product Documentation

You can find documentation for all Revenera products on the Revenera Product Documentation site:

https://docs.revenera.com

Revenera Community

On the Revenera Community site, you can quickly find answers to your questions by searching content from other
customers, product experts, and thought leaders. You can also post questions on discussion forums for experts to answer.
For each of Revenera’s product solutions, you can access forums, blog posts, and knowledge base articles.

https://community.revenera.com

Revenera Learning Center

The Revenera Learning Center offers free, self-guided, online videos to help you quickly get the most out of your Revenera
products. You can find a complete list of these training videos in the Learning Center.

https://learning.revenera.com

Revenera Support

For customers who have purchased a maintenance contract for their product(s), you can submit a support case or check
the status of an existing case by making selections on the Get Support menu of the Revenera Community.

https://community.revenera.com

SDK Status Checks Describes how to collect custom values that are relevant to your specific
application.

Common Function Return Values Lists common return values for Usage Intelligence functions.

Table 1-1 • Usage Intelligence 5.6.0 .NET SDK Developer Guide (cont.)

Section Description
6 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

https://docs.revenera.com
https://docs.revenera.com
https://community.revenera.com
https://community.revenera.com
https://learning.revenera.com
https://community.revenera.com

Chapter 1 Usage Intelligence 5.6.0 .NET SDK Developer Guide
Contact Us
Contact Us
Revenera is headquartered in Itasca, Illinois, and has offices worldwide. To contact us or to learn more about our products,
visit our website at:

http://www.revenera.com

You can also follow us on social media:

• Twitter

• Facebook

• LinkedIn

• YouTube

• Instagram
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 7

http://www.revenera.com
https://twitter.com/getrevenera
https://www.facebook.com/flexera/
https://www.linkedin.com/company/revenera/
https://www.youtube.com/c/GetRevenera
https://www.instagram.com/weareflexera/

Chapter 1 Usage Intelligence 5.6.0 .NET SDK Developer Guide
Contact Us
8 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

2

Getting Started with the

Usage Intelligence .NET SDK
This section explains how to get started using Usage Intelligence .NET SDK:

• System Requirements

• Registering Your Product

• Importing the SDK Files

• Basic Integration Steps

• Next Steps

System Requirements
The Usage Intelligence .NET SDK can be used with .NET Framework versions 2.0 and newer including Client Profile editions.

Registering Your Product
Before you can use the Usage Intelligence Software Analytics service or integrate the Usage Intelligence SDK with your
software, you must first create an account by visiting https://info.revenera.com/SWM-EVAL-Usage-Intelligence.

Once you have a user name and register a new product account for tracking your application, you can get your Product ID,
CallHome URL, and AES Key from the Administration page (within the Usage Intelligence dashboard). From here you can
also download the latest version of the SDK.

API Overview
When using the Usage Intelligence API, there is one main class that you will have to integrate with RUISDK. You need to
instantiate this class in the application. All Usage Intelligence methods use this class.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 9

https://info.revenera.com/SWM-EVAL-Usage-Intelligence

Chapter 2 Getting Started with the Usage Intelligence .NET SDK
Importing the SDK Files
Importing the SDK Files
Upon downloading the .NET SDK, you find 3 DLL files as follows:

In the filenames listed above, <version> is the RUI SDK release version number in form N.N.N where N is a number.

You do not need to worry if your application will run on x86 or x64 platforms. If you do not target any specific platform, you
should include both x64 and x86 DLLs with your application, and the Usage Intelligence .NET DLL will import the correct
one automatically. If, however, you choose to target a specific platform, you may include only the corresponding native
DLL in order to make the installation size smaller.

In order to download the Usage Intelligence SDK, go to the following page in the Revenera Community:

Usage Intelligence SDK Download Links and API Documentation

Basic Integration Steps
The most basic Usage Intelligence integration can be accomplished by following the steps below. It is however
recommended to read the more advanced documentation as Usage Intelligence can do much more than the basic
functionality that can be achieved by following these steps.

Task To perform basic integration:

1. Download the latest SDK from the following page in the Revenera Community, and extract it to your preferred project
location.

Usage Intelligence SDK Download Links and API Documentation

2. Add a reference to ruiSDKDotNet_<version>.dll in your project.

3. Add the directive using RUISDK_<VERSION> to the source files where you will be calling the .NET SDK. <VERSION> is the
current version number in the form N_N_N where N is a number.

4. Create an instance of the RUISDK object.

bool registerDefaultReachOut = true;
String ruiSDKDLLPath = "<path to Usage Intelligence core DLLs>";
RUISDK mySDK = new RUISDK(registerDefaultReachOut, ruiSDKDLLPath);

5. Create the configuration point to the directory where the Usage Intelligence SDK will create and update files. The
application using Usage Intelligence will need read and write access rights to this directory.

Table 2-1 • DLL Files

File Description

ruiSDKDotNet_<version>.dll The shared library supporting .NET

ruiSDK_<version>.x64.dll Native 64-bit DLL imported automatically by the .NET DLL

ruiSDK_<version>.x86.dll Native 32-bit DLL imported automatically by the .NET DLL
10 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

https://community.flexera.com/t5/Usage-Intelligence-Knowledge/Usage-Intelligence-SDK-download-links-and-API-documentation/ta-p/140516
https://community.flexera.com/t5/Usage-Intelligence-Knowledge/Usage-Intelligence-SDK-download-links-and-API-documentation/ta-p/140516

Chapter 2 Getting Started with the Usage Intelligence .NET SDK
Basic Integration Steps
String myPath = "<path to directory for SDK logging>";
String myProductId = "<Product ID>";
String myAppName = "<Your App Name>";
String myURL = "<CallHome URL without protocol prefix>";
String myKey = "<Your AES HEX Key>";
Int32 myProtocol = (Int32)RUIProtocolType.httpPlusEncryption;
bool myMultiSessionSetting = false;
bool myReachOutAutoSyncSetting = true;

mySDK.CreateConfig(myPath, myProductId, myAppName, myURL, myProtocol, myKey, myMultiSessionSetting,
myReachOutAutoSyncSetting);

Note the following:

• The Call Home URL, the Product ID and the AES Key can be retrieved from the Administration page (within the
Usage Intelligence dashboard)

• The protocol choice is based on the application and environment needs. Normally, HTTP protocol (port 80) will
give applications the greatest chance of success in most environments.

• The Multiple Session flag is a boolean value where you specify whether your application can have multiple user
sessions per runtime session. This is normally false.

Note • For further details, refer to Single vs. Multiple Session Modes.

• The ReachOut Auto Sync flag indicates whether or not a ReachOut should be requested as part of each SDK
Automatic Sync. A ReachOut request will be made only if a ReachOut handler has been set by registering the
default graphical handler (RUISDK) or a custom handler, RUISDK.SetReachOutHandler.

6. Initialize the SDK with your product information. This is most conveniently done via the RUISDK.SetProductData call.
This must be done BEFORE calling RUISDK.StartSDK.

String myProductEdition = "Professional";
String myLanguage = "US English";
String myVersion = "5.0.0";
String myBuildNumber = "17393";

mySDK.SetProductData(myProductEdition, myLanguage, myVersion, myBuildNumber);

7. Initialize the SDK with any optional custom properties by calling the method RUISDK.SetCustomProperty.

8. Call the method RUISDK.StartSDK.

Note • You must set all known values for product data and custom properties BEFORE calling RUISDK.StartSDK
otherwise you risk having null values for fields not specified. Once these calls are completed, you can safely call
RUISDK.StartSDK.

Before making any other RUI API tracking calls, you MUST call RUISDK.StartSDK. It is recommended that you place
this call at the entry point of your application so the Usage Intelligence SDK knows exactly at what time your
application runtime session was started.

If using multi-session mode, you also need to call RUISDK.StartSession when a user session is started, and also
provide a unique user session ID which you will then also use for closing the session or for Feature / Event
Tracking.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 11

Chapter 2 Getting Started with the Usage Intelligence .NET SDK
Basic Integration Steps
9. Call RUISDK.StopSDK in the closing event of your application so the Revulytics Usage Intelligence SDK knows when
your application runtime session has been closed.

Note • You must allow at least 5 seconds of application runtime to allow event data to be written to the log file and
synchronized with the Usage Intelligence Server. If necessary, add a sleep of 5 seconds before calling RUISDK.StopSDK.

If using multi-session mode, when user sessions are closed, you should call RUISDK.StopSession and send the ID of
the session that is being closed as a parameter.

10. Before running your application, copy the DLL files ruiSDK_<vesion>.x64.dll and runSDK_<version>.x86.dll inside
the BinDebug path (or BinRelease if you are compiling for release). These files are required by the Usage Intelligence
.NET SDK and must be included with your application. If you are building specifically for x64 or x86, you may then
choose to include only the corresponding DLL file.

The following is an example of the basic integration outlined below. This example uses single-session mode.

RUISDK mySDK;

public Form1()
{

//Create instance of RUISDK
bool registerDefaultReachOut = true;
String ruiSDKDLLPath = "<path to Revulytics Usage Intelligence SDK .NET library>";
mySDK = new RUISDK(registerDefaultReachOut, ruiSDKDLLPath);
//Set the file path and connection information
String myPath = "<path to directory for RUI SDK logging>";
String myProductId = "<Product ID>";
String myAppName = "<Your App Name>";
String myURL = "<CallHome URL without protocol prefix>";
String myKey = "<Your AES HEX Key>";
Int32 myProtocol = (Int32)RUIProtocolType.httpPlusEncryption;
bool myMultiSessionSetting = false;
bool myReachOutAutoSyncSetting = true;

mySDK.CreateConfig(myPath, myProductId, myAppName, myURL, myProtocol, myKey, myMultiSessionSetting,
myReachOutAutoSyncSetting);

// Set your product information

String myProductEdition = "Professional";
String myLanguage = "US English";
String myVersion = "5.0.0";
String myBuildNumber = "17393";

mySDK.SetProductData(myProductEdition, myLanguage, myVersion, myBuildNumber);

// If you have any custom properties set them here

//Inform Revulytics Usage Intelligence that the application has been started.
mySDK.StartSDK();

//Your program logic...
}

private void Form1_FormClosing(object sender, FormClosingEventArgs e)
12 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 2 Getting Started with the Usage Intelligence .NET SDK
Next Steps
{
//Inform Revulytics Usage Intelligence that this runtime session is closing down and sync.
//Must allow at least 5 seconds between ruiStartSDK() and this call. If less than that, add a

System.Threading.Thread.Sleep()
//or other mechanism to provide enough time to send captured events to RUI Server

mySDK.StopSDK(0);

//Your program logic...
}

Next Steps
In the above section, we covered the basic integration steps. While these steps would work for most software products, it is
recommended to do some further reading in order to get the most of what Usage Intelligence has to offer. It is
recommended to go into more detail by reading the pages SDK Configuration and Basic SDK Controls. Once you are
familiar with the SDK, you may look at the advanced features.

Advanced Features
By following the Basic Integration Steps above, the SDK will be able to collect information about how often users run your
product, how long they are engaged with your software as well as which versions and builds they are running. The SDK also
collects information on what platforms and architectures your software is being run (i.e. OS versions, language, screen
resolution, etc.). Once you have implemented the basic features, you may choose to use Usage Intelligence for more
advanced features that include:

• Feature / Event Tracking

• ReachOut Direct-to-Desktop Messaging Service

• Exception Tracking

• License Management

• Custom Properties
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 13

Chapter 2 Getting Started with the Usage Intelligence .NET SDK
Next Steps
14 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

3

SDK Configuration
Before an application can start reporting usage to the Revulytics Usage Intelligence SDK, it must first provide some basic
information such as the location of where the SDK will create and save its working files, the application Product ID and the
CallHome URL.

You should always fill in as much accurate and specific detail as possible since this data will be used by the Usage
Intelligence Analytics Server to generate the relevant reports. The more (optional) details you fill in about your product and
its licensing state, the more filtering and reporting options will be available to you inside the Usage Intelligence dashboard.

• SDK Object Initialization

• Getting SDK Version Information

• Getting the Client ID

• Initializing the Configuration

• Single vs. Multiple Session Modes

• Opt-Out Mechanism

• Providing Product Data

• Changing ReachOut on Autosync Setting

• Proxy Support

SDK Object Initialization
Before beginning any operation, you must first create an instance of the RUISDK object. The constructor is defined below.
RUISDK creates an instance of the SDK. The constructor does not configure the SDK (RUISDK.CreateConfig) nor start the
SDK (RUISDK.StartSDK).

A typical client will create only a single instance of the SDK. Creating more than one SDK instance is allowed and is used to
support clients that are plug-ins or other scenarios whereby multiple independent clients may co-exist in the same
executable. Multiple SDK instances perform independently of one another with the potential exception of shared or
unshared configuration file (RUISDK.CreateConfig).
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 15

Chapter 3 SDK Configuration
Getting SDK Version Information
RUISDK
RUISDK (Boolean registerDefaultGraphicalReachOutHandler, String sdkDLLPath, String sdkDLLName =
“ruiSDK_<version>”)¶

Parameters

RUISDK has the following parameters:

Throws

RUISDK throws a RUISDKCreationException If there is a problem constructing the SDK instance; this is the only SDK
method that throws an exception.

Getting SDK Version Information
RUISDK.GetSDKVersion returns the version information for the SDK instance in the supplied string parameter.

RUISDK.GetSDKVersion can be called more than once.

RUISDK.GetSDKVersion is a synchronous function, returning when all functionality is completed.

RUISDK.GetSDKVersion
String RUISDK.GetSDKVersion ()

Returns

RUISDK.GetSDKVersion returns a formatted string containing the RUISDK version information.

Getting the Client ID
RUISDK.GetClientId returns the client ID for the SDK instance.

RUISDK.GetClientId can be called more than once.

RUISDK.GetClientId is a synchronous function returning when all functionality is completed.

Table 3-1 • RUISDK Parameters

Parameter Description

registerDefaultGraphicalReachOutHandler
(bool)

If set to true, automatically registers the default graphical ReachOut.
If false, no default ReachOut is registered.

sdkDLLPath (String) Path to the core SDK DLL.

sdkDLLName (String) Optional parameter that defines the stem name for the core SDK DLL.
Default is ruiSDK_<version> where <version> is the version number
in form N.N.N where N is a digit (for example: ruiSDK_5.0.1). Should
not be modified unless there is a need to do this.
16 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 3 SDK Configuration
Initializing the Configuration
RUISDK.GetClientId
String RUISDK.GetClientId ()

Returns

RUISDK.GetClientId returns a formatted string containing the RUISDK client ID. It returns a string of “0” if the client ID is
not available.

Initializing the Configuration
The RUISDK.CreateConfig method must be called in order to initialize the configuration. The method signature is below.

RUISDK.CreateConfig creates a configuration for the SDK instance. A configuration is passed on a file, specified by
configFilePath, productID, and appName. If two or more SDK instances, in the same process or in different processes, use
the same values for these three parameters, then those SDK instances are bound together through a shared configuration.
When multiple different executables are being used, such usage is generally not recommended. Instead, each executable
should use a different appName value.

The SDK has two communications modes: HTTPS or HTTP + AES-128 encryption. The mode is configured by protocol. When
protocol is RUI_PROTOCOL_HTTP_PLUS_ENCRYPTION or RUI_PROTOCOL_HTTPS_WITH_FALLBACK, the AES key must be supplied
as a 128-bit hex-encoded string (aesKeyHex). When protocol is RUI_PROTOCOL_HTTPS, then aesKeyHex must be empty.

On first execution of a client application, no SDK configuration file will exist. This situation is detected by the RUI SDK and
will result in a New Registration message to the Usage Intelligence Server at RUISDK.StartSDK. Once the configuration is
received from the Server, the SDK writes the configuration file, that is then used for subsequent client application
executions.

RUISDK.CreateConfig must be called before most other APIs and must only be successfully called once.

RUISDK.CreateConfig is a synchronous function, returning when all functionality is completed.

RUISDK.CreateConfig
RUIResult RUISDK.CreateConfig (String configFilePath, String productID, String appName, String
serverURL, Int32 protocol, String aesKeyHex, Boolean multiSessionEnabled, Boolean reachOutOnAutoSync)

Parameters

The RUISDK.CreateConfig function has the following parameters.

Table 3-2 • RUI.CreateConfig Parameters

Parameter Description

configFilePath (String) The directory to use for the SDK instance’s configuration file. Cannot be empty;
must exist and be writable.

productID (String) The Revenera-supplied product ID for this client; 10 digits. You obtain this ID after
registering with Revenera.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 17

Chapter 3 SDK Configuration
Initializing the Configuration
appName (String) The customer-supplied application name for this client, to distinguish suites with
the same productID. Cannot be empty or contain white space; at most 16 UTF-8
characters. More information about the purpose of the appName parameter can be
found in the Knowledge Base article:

What is the purpose of the appName parameter when creating config in the SDK?

serverUrl (String) Every product registered with Usage Intelligence has its own unique CallHome URL
usually in the form ‘xxxxx.tbnet1.com’. This URL is generated automatically on
account creation and is used by the SDK to communicate with the Usage
Intelligence server. You can get this URL from the Developer Zone once you login to
the Usage Intelligence dashboard.

If you have a Premium product account, you may opt to use your own custom
CallHome URL (such as http://updates.yourdomain.com) that must be setup as a
CNAME DNS entry pointing to your unique Usage Intelligence URL.

Note • Before you can use your own custom URL, you must first inform Usage
Intelligence support (support@revenera.com) to register your domain with the Usage
Intelligence server. If you fail to do this, the server will automatically reject any
incoming calls using yourdomain.com as a CallHome URL. The URL should not contain
a protocol prefix.

protocol (int32) Indicates whether HTTP + AES, HTTPS with fall-back to HTTP + AES, or HTTPS is
used to communicate with the server.

Valid choices can be found in the RUIProtocolType enum and are:
httpPlusEncryption (1), httpsWithFallback (2), or https (3).

aesKeyHex (String) AES Key to use when protocol includes encryption (httpPlusEncryption or
httpsWithFallback); 32 hex chars (128 bit) key.

multiSessionEnabled (bool) Indicates whether or not the client will explicitly manage sessionIDs via
RUISDK.StartSession and RUISDK.StopSession, and supply those sessionIDs to
the various event tracking APIs. Refer to Single vs. Multiple Session Modes.

reachOutOnAutoSync (bool) Indicates whether or not a ReachOut should be requested as part of each SDK
Automatic Sync.

A ReachOut request will be made only if a ReachOut handler has been set by
registering the default graphical handler (RUISDK constructor) or a custom handler
(RUISDK.SetReachOutHandler). This value may be changed at runtime using the
call SetReachOutOnAutoSync.

Table 3-2 • RUI.CreateConfig Parameters

Parameter Description
18 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

https://community.flexera.com/t5/Usage-Intelligence-Knowledge/What-is-the-purpose-of-the-appName-parameter-when-creating/ta-p/139568
mailto:support@revenera.com
https://devzone.revulytics.com

Chapter 3 SDK Configuration
Single vs. Multiple Session Modes
Returns

The RUISDK.CreateConfig function returns a RUIResult enum value with the following possible values:

Single vs. Multiple Session Modes
In desktop software, a single application instance would normally have only one single user session. This means that such
an application would only show one window (or set of windows) to a single user and interaction is done with that single
user. If the user would like to use two different sessions, two instances of the application would have to be loaded that
would not affect each other. In such cases, you should use the single session mode, which handles user sessions
automatically and assumes that one process (instance) means one user session.

Table 3-3 • RUI.CreateConfig Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkPermantelyDisabled The Server has instructed a permanent disable.

configAlreadyCreated Configuration has already been successfully created.

invalidParameterExpectedNonEmpty Some API parameter is expected to be non-empty, and is not.

invalidParameterExpectedNoWhitespace Some API parameter is expected to be free of white space, and is not.

invalidParameterTooLong Some API parameter violates its allowable maximum length.

invalidConfigPath The configFilePath is not a well-formed directory name.

invalidConfigPathNonexistentDir The configFilePath identifies a directory that does not exist.

invalidConfigPathNotWritable The configFilePath identifies a directory that is not writable.

invalidProductID The productID is not a well-formed Product ID.

invalidServerURL The serverURL is not a well-formed URL.

invalidProtocol The protocol is not a legal value.

invalidAESKeyEpxectedEmpty The AES Key is expected to be NULL/empty, and it is not.

invalidAESKeyLength The AES Key is not the expected length of 32 hex chars.

invalidAESKeyFormat The AES Key is not valid hex encoding.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 19

Chapter 3 SDK Configuration
Opt-Out Mechanism
The multiple session mode needs to be used in multi-user applications, especially applications that have web interfaces. In
such applications, a number of users might be using the same application process simultaneously. In such cases, you need
to manually tell the Usage Intelligence SDK must be notified when user sessions start and stop, and also how to link events
(see Feature / Event Tracking) to user sessions.

To do this, when starting or stopping a user session, the methods RUISDK.StartSession and RUISDK.StopSession should
be used, and when tracking events on a per user basis, a session ID needs to be passed as a parameter.

Opt-Out Mechanism
Starting from version 5.1.0, a new opt-out mechanism was introduced. Using this mechanism, if a user does not want to
send tracking information to Revenera, the function RUISDK.OptOut must be called after calling RUISDK.CreateConfig and
before RUISDK.StartSDK.

RUISDK.OptOut instructs the SDK to send a message to the server to indicate that this user is opting-out (if not already sent
in previous sessions) and disables all further functionality and communication with the server.

When RUISDK.OptOut is called, the SDK sends a message to the Server after startup (RUISDK.StartSDK). This message
informs the Server that this client has opted-out and the Server will register the opt-out. This message is only sent to the
Server once. The opt-out flag on the Server will be used for reporting opt-out statistics only.

If RUISDK.OptOut is called before a new registration, the Server will never have any data about that installation. If
RUISDK.OptOut is called for an installation that was already being tracked, the Server will still contain the data that had
been collected in the past and no past data is deleted.

The SDK will send no further information to the server as long as the user is opted-out. The application must keep calling
RUISDK.OptOut before every startup as long as the user wants to stay opted-out. If this function is not called, then the SDK
assumes that the user is opting-in again and will start tracking normally.

Note • When an installation is not opted-out, it communicates with the Server immediately on calling RUISDK.StartSDK. At
this point, the SDK attempts to sync data regarding past application and event usage that had not been synced yet, and also
system and product information such as OS version, CPU, GPU, product version, product edition, etc.

RUISDK.OptOut
RUIRESULT RUISDK.OptOut ()

Returns

The RUISDK.OptOut function returns a RUIResult enum value with the following possible values:

Table 3-4 • RUISDK.OptOut Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.
20 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 3 SDK Configuration
Providing Product Data
Providing Product Data
The Usage Intelligence SDK V5 requires that the application provide product data every time the SDK instance is run. In
addition you can optionally set License data for the application. Finally, if you are using proxies to access the Internet,
there is a function to set up the required information for connecting through that proxy.

• Product Details

• License Management

Product Details
The following functions are available to set product data:

• Setting Product Data

• Setting Product Edition

• Setting Product Language

• Setting Product Version

• Setting Product Build Number

Setting Product Data
The RUISDK.SetProductData function sets or clears the product data.

Note • The product data must be set every time the SDK instance is run. This is different than V4 of the Usage Intelligence
(Trackerbird) SDK where the supplied product data was stored in the SDK configuration file and if it was not supplied, the
values in the configuration file were used.

RUISDK.SetProductData can be called between RUISDK.CreateConfig and RUISDK.StopSDK and can be called zero or
more times.

RUISDK.SetProductData is a synchronous function returning when all functionality is completed.

sdkPermanentlyDisabled The Server has instructed a permanent disable.

configNotCreated Configuration has not been successfully created.

sdkAlreadyStarted SDK has already been successfully started.

sdkAlreadyStopped SDK has already been successfully stopped.

Table 3-4 • RUISDK.OptOut Returns

Return Description
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 21

Chapter 3 SDK Configuration
Providing Product Data
RUISDK.SetProductData
RUIResult RUISDK.SetProductData (String productEdition, String productLanguage, String productVersion,
String productBuildNum)

Parameters

The RUISDK.SetProductData function has the following parameters.

Returns

The RUISDK.SetProductData function returns a RUIResult enum value with the following possible values:

Setting Product Edition
The RUISDK.SetProductEdition function allows you to set the edition of your product. An example of this would be when
a single product can be licensed/run in different modes such as “Home” and “Business”.

Table 3-5 • RUISDK.SetProductData Parameters

Parameter Description

productEdition (String) The product edition that is to be set. Maximum length of 128 characters.

productLanguage (String) The product language that is to be set. Maximum length of 128 characters.

productVersion (String) The product version that is to be set. Maximum length of 128 characters.

productBuildNumber (String) The product build number that is to be set. Maximum length of 128
characters.

Table 3-6 • RUISDK.SetProductData Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

sdkSuspended The Server has instructed a temporary back-off.

sdkPermantelyDisabled The Server has instructed a permanent disable.

sdkOptedOut nstance has been instructed by the application to opt-out.

configNotCreated Configuration has not been successfully created.

sdkAlreadyStopped SDK has already been successfully stopped.
22 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 3 SDK Configuration
Providing Product Data
Note • The product data must be set every time the SDK instance is run. This is different than V4 of the Usage Intelligence
(Trackerbird) SDK where the supplied product data was stored in the SDK configuration file and if it was not supplied, the
values in the configuration file were used.

RUISDK.SetProductEdition can be called between RUISDK.CreateConfig and RUISDK.StopSDK and can be called zero or
more times.

RUISDK.SetProductEdition is a synchronous function returning when all functionality is completed.

RUISDK.SetProductEdition
RUIResult RUISDK.SetProductEdition (String productEdition)¶

Parameters

The RUISDK.SetProductEdition function has the following parameters.

Returns

The RUISDK.SetProductEdition function returns a RUIResult enum value with the following possible values:

Table 3-7 • RUISDK.SetProductEdition Parameters

Parameter Description

productEdition (String) The product edition that is to be set. Maximum length of 128 characters.

Table 3-8 • RUISDK.SetProductEdition Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

sdkSuspended The Server has instructed a temporary back-off.

sdkPermantelyDisabled The Server has instructed a permanent disable.

sdkOptedOut Instance has been instructed by the application to opt-out.

configNotCreated Configuration has not been successfully created.

sdkAlreadyStopped SDK has already been successfully stopped.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 23

Chapter 3 SDK Configuration
Providing Product Data
Setting Product Language
The RUISDK.SetProductLanguage function allows you to set the language that the client is viewing your product. This is
useful for products that have been internationalized, so you can determine how many installations are running your
software in a particular language.

Note • The product data must be set every time the SDK instance is run. This is different than V4 of the Usage Intelligence
(Trackerbird) SDK where the supplied product data was stored in the SDK configuration file and if it was not supplied, the
values in the configuration file were used.

RUISDK.SetProductLanguage can be called between RUISDK.CreateConfig and RUISDK.StopSDK and can be called zero or
more times.

RUISDK.SetProductLanguage is a synchronous function returning when all functionality is completed.

RUISDK.SetProductLanguage
RUIResult RUISDK.SetProductLanguage (String productLanguage)

Parameters

The RUISDK.SetProductLanguage function has the following parameters.

Returns

The RUISDK.SetProductLanguage function returns a RUIResult enum value with the following possible values:

Table 3-9 • RUISDK.SetProductLanguage Parameters

Parameter Description

productLanguage (String) The product language that is to be set. Maximum length of 128 characters.

Table 3-10 • RUISDK.SetProductLanguage Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

sdkSuspended The Server has instructed a temporary back-off.

sdkPermantelyDisabled The Server has instructed a permanent disable.

sdkOptedOut Instance has been instructed by the application to opt-out.

configNotCreated Configuration has not been successfully created.
24 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 3 SDK Configuration
Providing Product Data
Setting Product Version
The RUISDK.SetProductVersion function is used to set the version of the application being run.

Note • The product data must be set every time the SDK instance is run. This is different than V4 of the Usage Intelligence
(Trackerbird) SDK where the supplied product data was stored in the SDK configuration file and if it was not supplied, the
values in the configuration file were used.

RUISDK.SetProductVersion can be called between RUISDK.CreateConfig and RUISDK.StopSDK and can be called zero or
more times.

RUISDK.SetProductVersion is a synchronous function returning when all functionality is completed.

RUISDK.SetProductVersion
RUIResult RUISDK.SetProductVersion (String productVersion)

Parameters

The RUISDK.SetProductVersion function has the following parameters.

Returns

The RUISDK.SetProductVersion function returns a RUIResult enum value with the following possible values:

sdkAlreadyStopped SDK has already been successfully stopped.

Table 3-11 • RUISDK.SetProduct Version Parameters

Parameter Description

productVersion (String) The product version that is to be set. Maximum length of 128 characters.

Table 3-12 • RUISDK.SetProductVersion Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

sdkSuspended The Server has instructed a temporary back-off.

Table 3-10 • RUISDK.SetProductLanguage Returns

Return Description
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 25

Chapter 3 SDK Configuration
Providing Product Data
Setting Product Build Number
The RUISDK.SetProductBuildNumber function is used to set the build number of the application being run.

Note • The product data must be set every time the SDK instance is run. This is different than V4 of the Usage Intelligence
(Trackerbird) SDK where the supplied product data was stored in the SDK configuration file and if it was not supplied, the
values in the configuration file were used.

RUISDK.SetProductBuildNumber can be called between RUISDK.CreateConfig and RUISDK.StopSDK and can be called
zero or more times.

RUISDK.SetProductBuildNumber is a synchronous function returning when all functionality is completed.

RUISDK.SetProductBuildNumber
RUIResult RUISDK.SetProductBuildNumber (String productBuildNum)

Parameters

The RUISDK.SetProductBuildNumber function has the following parameters.

Returns

The RUISDK.SetProductBuildNumber function returns a RUIResult enum value with the following possible values:

sdkPermantelyDisabled The Server has instructed a permanent disable.

sdkOptedOut Instance has been instructed by the application to opt-out.

configNotCreated Configuration has not been successfully created.

sdkAlreadyStopped SDK has already been successfully stopped.

Table 3-13 • RUISDK.SetProductBuildNumber Parameters

Parameter Description

productBuildNumber (String) The product build number that is to be set. Maximum length of 128
characters.

Table 3-14 • RUISDK.SetProductBuildNumber Returns

Return Description

ok Function successful.

Table 3-12 • RUISDK.SetProductVersion Returns

Return Description
26 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 3 SDK Configuration
Providing Product Data
License Management
The RUI.SetLicenseData function sets or clears the license data. The legal parameter values include unchanged (-1).

Note • Different from the V4 of the Usage Intelligence SDK, a sessionID parameter can be supplied.

The RUI.SetLicenseData function can be called between RUISDK.CreateConfig and RUISDK.StopSDK and can be called
zero or more times. However, the usage requirements of the sessionID parameter are different if RUI.SetLicenseData is
called before RUISDK.StartSDK or called after RUISDK.StartSDK. See sessionId for more information.

The RUI.SetLicenseData function can be called while a New Registration is being performed (RUISDK.CreateConfig,
RUISDK.StartSDK). However, the event data is not written to the log file until the New Registration completes, and if the
New Registration fails, the data will be lost.

The RUI.SetLicenseData function is an asynchronous function, returning immediately with further functionality executed
on separate thread(s).

RUI.SetLicenseData
RUIResult RUISDK.SetLicenseData (Int32 keyType, Int32 keyExpired, Int32 keyActivated, Int32 keyBlocked,
Int32 keyAllowed, String sessionID = “”)

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

sdkSuspended The Server has instructed a temporary back-off.

sdkPermantelyDisabled The Server has instructed a permanent disable.

sdkOptedOut Instance has been instructed by the application to opt-out.

configNotCreated Configuration has not been successfully created.

sdkAlreadyStopped SDK has already been successfully stopped.

Table 3-14 • RUISDK.SetProductBuildNumber Returns

Return Description
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 27

Chapter 3 SDK Configuration
Providing Product Data
Parameters

The RUI.SetLicenseData function has the following parameters.

Table 3-15 • RUI.SetLicenseData Parameters

Parameter Description

keyType (Int32) One of the key types from the RUILicenseKeyType enum. Note that custom types
can be used for application specific license types:

unchanged (-1)
evaluation (0)
purchased (1)
freeware (2)
unknown (3)
nfr (4) // Not For Resale
custom1 (5)
custom2 (6)
custom3 (7)

keyExpired (Int32) Indicates whether the client license has expired. Use one of the
RUILicenseKeyStatus enum choices for the values:

unchanged (-1)
no (0)
yes (1)

keyActivated (Int32 Indicates whether the client license has been activated. Use one of the
RUILicenseKeyStatus enum choices for the values:

unchanged (-1)
no (0)
yes (1)

keyBlocked (Int32) Indicates whether the client license key has been blocked. Use one of the
RUILicenseKeyStatus enum choices for the values:

unchanged (-1)
no (0)
yes (1)

keyAllowed (Int32) Indicates whether the client license key has been allowed. Use one of the
RUILicenseKeyStatus enum choices for the values:

unchanged (-1)
no (0)
yes (1)
28 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 3 SDK Configuration
Providing Product Data
Returns

The RUI.SetLicenseData function returns a RUIResult enum value with the following possible values:

sessionId (String) Optional session ID complying with the following usage content conditioning and
validation) rules in RUISDK.StartSession).

The usage requirements of the sessionID parameter are different if
RUI.SetLicenseData is called before RUISDK.StartSDK or called after
RUISDK.StartSDK.

• Called before startSDK (regardless of multiSessionEnabled)—sessionID
must be empty.

• Called after startSDK and multiSessionEnabled is set to false—sessionID
must be empty. This is similar to event tracking APIs.

• Called after startSDK and multiSessionEnabled is set to true—sessionID
must be a current valid value used in RUISDK.StartSession, or it can be
empty. This is different than normal event tracking APIs, whereby a empty
value is not allowed.

Table 3-16 • RUI.SetLicenseData Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

sdkSuspended The Server has instructed a temporary back-off.

sdkPermantelyDisabled The Server has instructed a permanent disable.

sdkOptedOut Instance has been instructed by the application to opt-out.

configNotCreated Configuration has not been successfully created.

sdkAlreadyStopped SDK has already been successfully stopped.

invalidSessionIDExpectedEmpty The sessionID is expected to be empty, and it was not.

invalidSessionIDExpectedNonEmpty The sessionID is expected to be non-empty, and it was not.

invalidSessionIDTooShort The sessionID violates its allowable minimum length. Minimum length is 10.

Table 3-15 • RUI.SetLicenseData Parameters

Parameter Description
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 29

Chapter 3 SDK Configuration
Changing ReachOut on Autosync Setting
Changing ReachOut on Autosync Setting
The flag to determine whether or not a ReachOut should be requested as part of each SDK Automatic Sync is initially set in
the RUISDK.CreateConfig call. There may be certain cases when the application wants to either enable or disable this
functionality during the application lifetime.

The SetReachOutOnAutoSync function allows the application to enable or disable this capability after
RUISDK.CreateConfig has been called.

The SetReachOutOnAutoSync function enables (true) or disables (false) the ReachOut on Autosync capability. Note if the
call does not change the existing setting, the API will still return OK.

The SetReachOutOnAutoSync function can be called between RUISDK.CreateConfig and RUISDK.StopSDK and can be
called zero or more times.

SetReachOutOnAutoSync
RUIResult SetReachOutOnAutoSync (Boolean reachOutOnAutoSyncSetting)¶

Parameters

The SetReachOutOnAutoSync function has the following parameters.

Returns

The SetReachOutOnAutoSync function returns a RUIResult enum value with the following possible values:

invalidSessionIDTooLong The sessionID violates its allowable maximum length. Maximum length is 64.

invalidSessionIDNotActive The sessionID is not currently in use.

Table 3-17 • SetReachOutOnAutoSync Parameters

Parameter Description

reachOutOnAutoSyncSetting (bool) Enable (true) or disable (false) the ReachOut on Autosync capability.

Table 3-18 • SetReachOutOnAutoSync Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

Table 3-16 • RUI.SetLicenseData Returns

Return Description
30 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 3 SDK Configuration
Proxy Support
Proxy Support
The Usage Intelligence SDK V5 library supports communications through HTTP proxy servers on all major operating system
types: Windows, Linux, and macOS. Application developers are responsible for obtaining proxy credentials (if the proxy
requires it) and setting those credentials in the SDK so communications can use the credentials for the proxy. The function
RUISDK.SetProxy handles setting and clearing the proxy related information.

The RUISDK.SetProxy function sets or clears the data to be used with a proxy. If there is no proxy between the SDK and the
Server, there is no need to use this function. The address can be either empty (for transparent proxy servers) or non-empty.
The username and password must both be empty (non-authenticating proxy) or both be non-empty (authenticating
proxy). The port is only used for non-transparent proxy servers, hence port must be zero if address is empty, otherwise port
must be non-zero.

RUISDK.SetProxy can be called between RUISDK.CreateConfig and RUISDK.StopSDK, and can be called zero or more
times.

RUISDK.SetProxy is a synchronous function, returning when all functionality is completed.

RUISDK.SetProxy
RUIResult RUISDK.SetProxy (String address, UInt16 port, String username, String password)

Permitted Parameter Combinations

The SDK uses the proxy data in multiple ways to attempt to communicate via a proxy. The allowed parameter
combinations and their usage are as follows:

sdkSuspended The Server has instructed a temporary back-off.

sdkPermantelyDisabled The Server has instructed a permanent disable.

sdkOptedOut Instance has been instructed by the application to opt-out.

configNotCreated Configuration has not been successfully created.

sdkAlreadyStopped SDK has already been successfully stopped.

Table 3-19 • RUISDK.SetProxy Permitted Parameter Combinations

address port username password Description

empty 0 empty empty Resets the proxy data to its initial state, no proxy
server is used, and the Server is contacted directly.

non-empty not 0 empty empty Identifies a non-authenticating non-transparent
proxy that will be used unless communications
fails, then falling back to using no proxy.

Table 3-18 • SetReachOutOnAutoSync Returns

Return Description
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 31

Chapter 3 SDK Configuration
Proxy Support
Parameters

The RUISDK.SetProxy function has the following parameters.

Returns

The RUISDK.SetProxy function returns a RUIResult enum value with the following possible values:

empty 0 non-empty non-empty Identifies an authenticating transparent proxy that
will be used unless communications fails, then
falling back to using no proxy.

non-empty not 0 non-empty non-empty Identifies an non-transparent authenticating proxy
that will be used unless communications fails, then
falling back to using an authenticating transparent
proxy, then falling back to using no proxy.

Table 3-20 • RUISDK.SetProxy Parameters

Parameter Description

address (String) The server name or IP address (dot notation) for the proxy server.

port (UInt16) The port for the proxy server; only used with non-transparent proxy, port != 0 if
and only if address non-empty.

username (String) The proxy username; username and password must both be empty or both be
non-empty.

password (String) The proxy password; username and password must both be empty or both be
non-empty.

Table 3-21 • RUISDK.SetProxy Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

sdkSuspended The Server has instructed a temporary back-off.

sdkPermantelyDisabled The Server has instructed a permanent disable.

Table 3-19 • RUISDK.SetProxy Permitted Parameter Combinations

address port username password Description
32 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 3 SDK Configuration
Proxy Support
sdkOptedOut Instance has been instructed by the application to opt-out.

configNotCreated Configuration has not been successfully created.

sdkAlreadyStopped SDK has already been successfully stopped.

Table 3-21 • RUISDK.SetProxy Returns

Return Description
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 33

Chapter 3 SDK Configuration
Proxy Support
34 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

4

Basic SDK Controls
Once the required configuration is initialized (explained in SDK Configuration) and set according to the needs of your
application, you may inform the SDK that the application has started. This will allow you to use further functions that
expect the application to be running such as RUISDK.CheckLicenseKey and RUISDK.CheckForReachOut.

• Starting the SDK

• Stopping the SDK

• Starting a Session

• Stopping a Session

• Caching and Synchronizing

Starting the SDK
The RUISDK.StartSDK function starts the SDK. RUISDK.StartSDK must be paired with a call to RUISDK.StopSDK.

After the SDK is started, the various event tracking APIs are available to be used. If RUISDK.CreateConfig did not detect a
configuration file, RUISDK.StartSDK will perform a New Registration with the Server. Until a New Registration is complete,
the SDK will not be able to save event data to a log file or perform synchronization with the Server. A successful New
Registration (or presence of a configuration file) will put the SDK into a normal running state, whereby events are saved to
a log file, automatic and manual synchronizations with the Server are possible, and getting ReachOut campaigns from the
Server are possible. A failed New Registration will put the SDK into an aborted state, not allowing further activity.

RUISDK.StartSDK must be called after RUISDK.CreateConfig, and must be called only once.

RUISDK.StartSDK is an asynchronous function, returning immediately with further functionality executed on separate
thread(s).

If RUISDK.OptOut is called before a new registration has been done for a user, the SDK will not sync any system and product
information and no data is recorded for the user. The SDK will inform the server once that there is an opted out user for
reporting opt-out statistics only.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 35

Chapter 4 Basic SDK Controls
Stopping the SDK
RUISDK.StartSDK
RUIResult RUISDK.StartSDK ()

Returns

The RUISDK.StartSDK function returns a RUIResult enum value with the following possible values.

Stopping the SDK
The RUISDK.StopSDK function stops the SDK that was started with RUISDK.StartSDK. If explicit sessions are allowed
(multiSessionsEnabled = true in RUISDK.CreateConfig), then any sessions that have been started with
RUISDK.StartSession that have not been stopped with RUISDK.StopSession are automatically stopped. A manual
synchronization with the RUI Server, RUISDK.Sync, will be performed at stop depending on the value of doSync (as
described in Parameters)

RUISDK.StopSDK must be called after RUISDK.StartSDK and must be called only once. After RUISDK.StopSDK is called, the
various event tracking APIs are no longer available. The only API available is RUISDK.GetState. The SDK cannot be re-
started with a subsequent call to RUISDK.StartSDK.

RUISDK.StopSDK is a synchronous function, including the manual synchronization with the Server (if requested), returning
when all functionality is completed.

RUISDK.StopSDK
RUIResult RUISDK.StopSDK (Int32 doSync)¶

Table 4-1 • RUISDK.StartSDK Returns

Return Description

ok Synchronous functionality successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

sdkPermanentlyDisabled The Server has instructed a permanent disable.

configNotCreated Configuration has not been successfully created.

sdkAlreadyStarted SDK has already been successfully started.

sdkAlreadyStopped SDK has already been successfully stopped.
36 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 4 Basic SDK Controls
Stopping the SDK
Parameters

The RUISDK.StopSDK function has the following parameters.

Returns

The RUISDK.StopSDK function returns a RUIResult enum value with the following possible values.

Code Example

This example shows RUISDK.StopSDK being called in the closing event of a form.

// Create instance
bool registerDefaultReachOut = true;

Table 4-2 • RUISDK.StopSDK Parameters

Parameter Description

doSync (Int32) Indicates whether to do a manual synchronization as part of the stop, and if so,
the wait limit.

A manual synchronization with the Server, RUISDK.Sync, will be performed at stop
depending on the value of doSync:

• 1—Do not perform a manual synchronization with the Server as part of the
stop.

• 0—Perform a manual synchronization with the Server as part of the stop; wait
indefinitely for completion.

• >0—Perform a manual synchronization with the Server as part of the stop;
wait only doSync seconds for completion.

Table 4-3 • RUISDK.StopSDK Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

sdkPermanentlyDisabled The Server has instructed a permanent disable.

configNotCreated Configuration has not been successfully created.

sdkAlreadyStarted SDK has already been successfully started.

sdkAlreadyStopped SDK has already been successfully stopped.

invalidDoSyncValue The doSync manual sync flag/limit violates its allowable range.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 37

Chapter 4 Basic SDK Controls
Starting a Session
String ruiSDKDLLPath = "<path to Revulytics Usage Intelligence SDK .NET library>";
mySDK = new RUISDK(registerDefaultReachOut, ruiSDKDLLPath);
// Other initialization.....

private void Form1_FormClosing(object sender, FormClosingEventArgs e)
{

mySDK.StopSDK(5);
}

Recommendation

If you are using a Windows forms application, the best location to place the RUISDK.StopSDK call would be inside of the
entry point method of your application, on the line immediately following the Application.Run call that creates your main
form, as seen below. This will allow the Usage Intelligence SDK to execute its final server synchronization procedure AFTER
your form has been closed.

Although RUISDK.StopSDK usually takes just a few milliseconds to execute, in case of a slow network connection, the user
could experience a small lag from when they hit your application close button until the time the form actually closes. By
placing RUISDK.StopSDK in the location below, this delay is completely invisible to the user since the form would have been
already closed.

// Create instance
bool registerDefaultReachOut = true;
String ruiSDKDLLPath = "<path to Revulytics Usage Intelligence SDK .NET library>";
mySDK = new RUISDK(registerDefaultReachOut, ruiSDKDLLPath);
// Other initialization.....

[STAThread]
static void Main()
{

Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(false);
Application.Run(new Form1());
mySDK.Stop(5);

}

Starting a Session
The RUISDK.StartSession function starts an explicit session for event tracking in the SDK. It must be paired with a call to
RUISDK.StopSession.

Explicit sessions are allowed only if RUISDK.CreateConfig was called with multiSessionEnabled = true. When explicit
sessions are enabled, a valid sessionID becomes a required parameter to the event tracking APIs, as described in
Parameters.

RUISDK.StartSession can be called between RUISDK.StartSDK and RUISDK.StopSDK, and can be called zero or more
times.

RUISDK.StartSession is a synchronous function, returning when all functionality is completed.

RUISDK.StartSession
RUIResult RUISDK.StartSession (String sessionID)
38 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 4 Basic SDK Controls
Starting a Session
Parameters

The RUISDK.StartSession function has the following parameters.

Returns

The RUISDK.StartSession function returns a RUIResult enum value with the following possible values.

Table 4-4 • RUISDK.StartSession Parameters

Parameter Description

sessionID (String) This parameter should contain a unique ID that refers to the user session that is
being started. This same ID should later be used for event tracking.

The content of a sessionID is conditioned and validated (after conditioning) with
the following rules:

• Conditioning—All leading white space is removed.

• Conditioning—All trailing white space is removed.

• Conditioning—All internal white spaces other than space characters (' ') are
removed.

• Validation—Cannot be shorter than 10 UTF-8 characters.

• Validation—Cannot be longer than 64 UTF-8 characters.

The resulting conditioned and validated sessionID must be unique (i.e. not
already in use).

Note • With the above conditioning, two sessionIDs that differ only by white space
or after the 64th character, will not be unique. A sessionID should not be re-used for
different sessions.

Table 4-5 • RUISDK.StartSession Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

suspended Instance has been instructed by Server to back-off. Will return to Running
once back-off cleared.

permanentlyDisabled Instance has been instructed by Server to disable. This is permanent,
irrecoverable state.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 39

Chapter 4 Basic SDK Controls
Stopping a Session
Stopping a Session
The RUISDK.StopSession function stops an explicit session started with RUISDK.StartSession.

Explicit sessions are allowed only if RUISDK.CreateConfig was called with multiSessionEnabled = true. Any explicit
sessions not ended with a call to RUISDK.StopSession are automatically ended when RUISDK.StopSDK is called. In case this
method is never called, eventually this session will be considered as “timed-out”, and the time of the last recorded event
will be assumed to be the time when the last event was recorded.

RUISDK.StopSession can be called between RUISDK.StartSDK and RUISDK.StopSDK, and can be called zero or more times.

RUISDK.StopSession is a synchronous function, returning when all functionality is completed.

RUISDK.StopSession
RUIResult RUISDK.StopSession (String sessionID)

Parameters

The RUISDK.StopSession function has the following parameters.

sdkOptedOut Instance has been instructed by the application to opt-out.

configNotCreated Configuration has not been successfully created.

sdkNotStarted SDK has not been successfully started.

functionNotAvail Function is not available.

sdkAlreadyStopped SDK has already been successfully stopped.

invalidSessionIDExpectedNonEmpty The sessionID is expected to be non-empty, and it was not.

invalidSessionIDTooShort The sessionID violates its allowable minimum length.

invalidSessionIDTooLong The sessionID violates its allowable maximum length.

invalidSessionIDAlreadyActive The sessionID is already currently in use.

Table 4-6 • RUISDK.StopSession Parameters

Parameter Description

sessionID (String) This parameter should contain a unique ID that refers to the user session that is
being stopped. This must be the same ID that was used earlier when calling
RUISDK.StartSession.

Table 4-5 • RUISDK.StartSession Returns

Return Description
40 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 4 Basic SDK Controls
Caching and Synchronizing
Returns

The RUISDK.StopSession function returns a GenericReturn enum value with the following possible values.

Caching and Synchronizing
The Usage Intelligence SDK was designed to minimize network traffic and load on the end user’s machine. In order to do
this, all the collected architecture info and runtime tracking data is cached locally and then compressed and sent to the
Usage Intelligence server in batches at various intervals whenever appropriate. Log data is usually sent at least once for
every runtime session (during RUISDK.StartSDK), however this may vary based on the type of application and usage
activity.

Data may be sent via HTTP (port 80) or HTTPS (port 443) depending on application preference. When data is sent over
HTTP, AES encryption is used to encrypt the data payload. When data is sent on HTTPS, normal HTTPS security measures
are used. The application may also choose to start with HTTPS communication and if blocked or unsuccessful the SDK will
fall back to using encrypted HTTP.

Table 4-7 • RUISDK.StopSession Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

suspended Instance has been instructed by Server to back-off. Will return to Running
once back-off cleared.

permanentlyDisabled Instance has been instructed by Server to disable. This is permanent,
irrecoverable state.

sdkOptedOut Instance has been instructed by the application to opt-out.

configNotCreated Configuration has not been successfully created.

sdkNotStarted SDK has not been successfully started.

functionNotAvail Function is not available.

sdkAlreadyStopped SDK has already been successfully stopped.

invalidSessionIDExpectedNonEmpty The sessionID is expected to be non-empty, and it was not.

invalidSessionIDTooShort The sessionID violates its allowable minimum length.

invalidSessionIDTooLong The sessionID violates its allowable maximum length.

invalidSessionIDAlreadyActive The sessionID is already currently in use.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 41

Chapter 4 Basic SDK Controls
Caching and Synchronizing
• Forced Synchronization

Forced Synchronization
Under normal conditions, you do not need to instruct the Usage Intelligence SDK when to synchronize with the cloud
server, since this happens automatically and is triggered by application interaction with the API. In a typical runtime
session, the SDK will always attempt to synchronize with the server at least once whenever the application calls
RUISDK.StartSDK. For long running applications, the SDK will periodically sync with the server every 20 minutes.

For applications that require a more customized synchronization, the API also provides an option to request manual
synchronization of all cached data. This is done by calling the RUISDK.Sync function.

The RUISDK.Sync function performs a manual synchronization with the Server. In normal operation, the SDK periodically
performs automatic synchronizations with the Server. RUISDK.Sync provides the client an ability to explicitly synchronize
with the Server on demand. The manual synchronization can request a ReachOut with getReachOut.

Note • Similar to the parameter reachOutOnAutoSync (on function RUISDK.CreateConfig), the ReachOut will not be
requested if there is no registered handler (RUISDK and RUISDK.SetReachOutHandler).

RUISDK.Sync can be called between RUISDK.StartSDK and RUISDK.StopSDK and can be called zero or more times.

Note • RUISDK.Sync will not be successful if a New Registration is in progress (i.e. RUISDK.CreateConfig and
RUISDK.StartSDK). A manual synchronization with the Server can be associated with RUISDK.StopSDK.

RUISDK.Sync is an asynchronous function returning immediately with further functionality executed on separate thread(s).

RUISDK.Sync
RUIResult RUISDK.Sync (Boolean getReachOut)

Parameters

The RUISDK.Sync function has the following parameters.

Table 4-8 • RUISDK.Sync Parameters

Parameter Description

getReachout (bool) This optional parameter instructs the server whether to send a ReachOut message
during this particular sync if available.
42 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 4 Basic SDK Controls
Caching and Synchronizing
Returns

The RUISDK.Sync function returns a RUIResult enum value with the following possible values.

Table 4-9 • RUISDK.Sync Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

suspended Instance has been instructed by Server to back-off. Will return to Running
once back-off cleared.

permanentlyDisabled Instance has been instructed by Server to disable. This is permanent,
irrecoverable state.

sdkOptedOut Instance has been instructed by the application to opt-out.

configNotCreated Configuration has not been successfully created.

sdkNotStarted SDK has not been successfully started.

syncAlreadyRunning A sync with the Server is already running.

sdkAlreadyStopped SDK has already been successfully stopped.

invalidDoSyncValue The doSync manual sync flag/limit violates its allowable range.

timeThresholdNotReached The API call frequency threshold (set by the Server) has not been reached.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 43

Chapter 4 Basic SDK Controls
Caching and Synchronizing
44 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

5

Feature / Event Tracking
Through event tracking, Usage Intelligence allows you keep track of how your clients are interacting with the various
features within your application, potentially identifying how often every single feature is being used by various user
groups. Apart from monitoring feature usage, you can also keep track of how often an event happens - such as how often
an auto save has been made on average for every hour your application was running. This is accomplished through
RUISDK.TrackEvent.

You may also keep a numeric value, a text value, or a collection of name/value String pairs every time an event is reported.
This can be used, for example in the case of RUISDK.TrackEventNumeric, to keep track of the length of time it took to save
a file, or the file size that was saved, etc. These events can be recorded using the functions RUISDK.TrackEventNumeric,
RUISDK.TrackEventText, and RUISDK.TrackEventCustom respectively.

Once event-related data has been collected, you will be able to identify trends of the features that are most used during
evaluation and whether this trend changes once users switch to a freeware or purchased license or once they update to a
different version/product build. You will also be able to compare whether any UI tweaks in a particular version or build
number had any effect on exposing a particular feature or whether changes in the actual functionality make a feature more
or less popular with users. This tool provides excellent insight for A/B testing whereas you can compare the outcome from
different builds to improve the end user experience.

• Tracking an Event

• Logging a Normal Event with a Numeric Field

• Logging a Normal Event with a String Field

• Logging a Custom Event

Note • Event Tracking should NOT be used to track the occurrence of exceptions since there is another specific API call for this
purpose. If you need to track exceptions, refer to Exception Tracking.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 45

Chapter 5 Feature / Event Tracking
Tracking an Event
Tracking an Event
The RUISDK.TrackEvent feature enables you keep track of how your clients are interacting with the various features within
your application, potentially identifying how often every single feature is being used by various user groups. Apart from
monitoring feature usage, you can also keep track of how often an event happens - such as how often an auto save has
been made on average for every hour your application was running.

The RUISDK.TrackEvent feature logs a normal event with the supplied data.

RUISDK.TrackEvent can be called between RUISDK.StartSDK and RUISDK.StopSDK, and can be called zero or more times.

RUISDK.TrackEvent can be called while a New Registration is being performed (RUISDK.CreateConfig, RUISDK.StartSDK).
However, the event data is not written to the log file until the New Registration completes, and if the New Registration fails,
the data will be lost.

RUISDK.TrackEvent is an asynchronous function, returning immediately with further functionality executed on separate
thread(s).

RUISDK.TrackEvent
RUIResult RUISDK.TrackEvent (String eventCategory, String eventName, String sessionID = “”)

Parameters

The RUISDK.TrackEvent function has the following parameters.

Table 5-1 • ruiTrackEvent() Parameters

Parameter Description

eventCategory (String) The name of the category of this event. This parameter is optional (set to
string.Empty or null if not required).

Unlike V4 of the Usage Intelligence SDK, there is no concept of extended names
(for eventCategory and eventName). The content of eventCategory and
eventName is conditioned and validated (after conditioning) with the following
rules:

• Conditioning—All leading white space is removed.

• Conditioning—All trailing white space is removed.

• Conditioning—All internal white spaces other than space characters (' ')
are removed.

• Conditioning—Trimmed to a maximum of 128 UTF-8 characters.

• Validation—eventCategory can be empty; eventName cannot be empty.
46 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 5 Feature / Event Tracking
Tracking an Event
Returns

The RUISDK.TrackEvent function returns a RUIResult enum value with the following possible values.

eventName (String) The name of the event to be tracked.

Unlike V4 of the Usage Intelligence SDK, there is no concept of extended names
(for eventCategory and eventName). The content of eventCategory and
eventName is conditioned and validated (after conditioning) with the following
rules:

• Conditioning—All leading white space is removed.

• Conditioning—All trailing white space is removed.

• Conditioning—All internal white spaces other than space characters (' ')
are removed.

• Conditioning—Trimmed to a maximum of 128 UTF-8 characters.

• Validation—eventCategory can be empty; eventName cannot be empty.

sessionID (String) If multiple user sessions are supported within the application
(multiSessionEnabled = true), this should contain the unique ID that refers to
the user session in which the event occurred. It must be a current valid value
used in RUISDK.StartSession.

If the application supports only a single session (multiSessionEnabled =
false), then this value should be empty.

Table 5-2 • RUISDK.TrackEvent Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

suspended Instance has been instructed by Server to back-off. Will return to Running
once back-off cleared.

permanentlyDisabled Instance has been instructed by Server to disable. This is permanent,
irrecoverable state.

sdkOptedOut Instance has been instructed by the application to opt-out.

configNotCreated Configuration has not been successfully created.

Table 5-1 • ruiTrackEvent() Parameters

Parameter Description
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 47

Chapter 5 Feature / Event Tracking
Logging a Normal Event with a Numeric Field
Logging a Normal Event with a Numeric Field
The RUISDK.TrackEventNumeric function logs a normal event with the supplied data, including a custom numeric field.

The RUISDK.TrackEventNumeric function can be called between RUISDK.StartSDK and RUISDK.StopSDK, and can be called
zero or more times.

The RUISDK.TrackEventNumeric function can be called while a New Registration is being performed
(RUISDK.CreateConfig, RUISDK.StartSDK). However, the event data is not written to the log file until the New Registration
completes, and if the New Registration fails, the data will be lost.

The RUISDK.TrackEventNumeric function is an asynchronous function, returning immediately with further functionality
executed on separate thread(s).

RUISDK.TrackEventNumeric
RUIResult RUISDK.TrackEventNumeric (String eventCategory, String eventName, Double customValue, String
sessionID = “”)

sdkNotStarted SDK has not been successfully started.

sdkAlreadyStopped SDK has already been successfully stopped.

invalidSessionIDExpectedEmpty The sessionID is expected to be empty, and it was not.

invalidSessionIDExpectedNonEmpty The sessionID is expected to be non-empty, and it was not.

invalidSessionIDTooShort The sessionID violates its allowable minimum length.

invalidSessionIDTooLong The sessionID violates its allowable maximum length.

invalidSessionIDAlreadyActive The sessionID is already currently in use.

invalidParameterExpectedNonEmpty Some API parameter is expected to be non-empty, and is not.

Table 5-2 • RUISDK.TrackEvent Returns

Return Description
48 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 5 Feature / Event Tracking
Logging a Normal Event with a Numeric Field
Parameters

The RUISDK.TrackEventNumeric function has the following parameters.

Table 5-3 • RUISDK.TrackEventNumeric Parameters

Parameter Description

eventCategory (String) The name of the category of this event. This parameter is optional (set to
string.Empty or null if not required).

Unlike V4 of the Usage Intelligence SDK, there is no concept of extended names
(for eventCategory and eventName). The content of eventCategory and
eventName is conditioned and validated (after conditioning) with the following
rules:

• Conditioning—All leading white space is removed.

• Conditioning—All trailing white space is removed.

• Conditioning—All internal white spaces other than space characters (' ') are
removed.

• Conditioning—Trimmed to a maximum of 128 UTF-8 characters.

• Validation—eventCategory can be empty; eventName cannot be empty.

eventName (String) The name of the event to be tracked.

Unlike V4 of the Usage Intelligence SDK, there is no concept of extended names
(for eventCategory and eventName). The content of eventCategory and
eventName is conditioned and validated (after conditioning) with the following
rules:

• Conditioning—All leading white space is removed.

• Conditioning—All trailing white space is removed.

• Conditioning—All internal white spaces other than space characters (' ') are
removed.

• Conditioning—Trimmed to a maximum of 128 UTF-8 characters.

• Validation—eventCategory can be empty; eventName cannot be empty.

customValue (double) A numeric custom value related to this particular event.

sessionID (String) If multiple user sessions are supported within the application
(multiSessionEnabled = true), this should contain the unique ID that refers to
the user session in which the event occurred. It must be a current valid value used
RUISDK.StartSession.

If the application supports only a single session (multiSessionEnabled = false),
then this value should be empty.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 49

Chapter 5 Feature / Event Tracking
Logging a Normal Event with a String Field
Returns

The RUISDK.TrackEventNumeric function returns a RUIResult enum value with the following possible values.

Logging a Normal Event with a String Field
The RUISDK.TrackEventText function logs a normal event with the supplied data, including a custom string field.

The RUISDK.TrackEventText function can be called between RUISDK.StartSDK and RUISDK.StopSDK, and can be called
zero or more times.

The RUISDK.TrackEventText function can be called while a New Registration is being performed (RUISDK.CreateConfig,
RUISDK.StartSDK). However, the event data is not written to the log file until the New Registration completes, and if the
New Registration fails, the data will be lost.

Table 5-4 • RUISDK.TrackEventNumeric Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

suspended Instance has been instructed by Server to back-off. Will return to Running
once back-off cleared.

permanentlyDisabled Instance has been instructed by Server to disable. This is permanent,
irrecoverable state.

sdkOptedOut Instance has been instructed by the application to opt-out.

configNotCreated Configuration has not been successfully created.

sdkNotStarted SDK has not been successfully started.

sdkAlreadyStopped SDK has already been successfully stopped.

invalidSessionIDExpectedEmpty The sessionID is expected to be empty, and it was not.

invalidSessionIDExpectedNonEmpty The sessionID is expected to be non-empty, and it was not.

invalidSessionIDTooShort The sessionID violates its allowable minimum length.

invalidSessionIDTooLong The sessionID violates its allowable maximum length.

invalidSessionIDAlreadyActive The sessionID is already currently in use.

invalidParameterExpectedNonEmpty Some API parameter is expected to be non-empty, and is not.
50 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 5 Feature / Event Tracking
Logging a Normal Event with a String Field
The RUISDK.TrackEventText function is an asynchronous function, returning immediately with further functionality
executed on separate thread(s).

RUISDK.TrackEventText
RUIResult RUISDK.TrackEventText (String eventCategory, String eventName, String customValue, String
sessionID = “”)

Parameters

The RUISDK.TrackEventText function has the following parameters.

Table 5-5 • RUISDK.TrackEventText Parameters

Parameter Description

eventCategory (String) The name of the category of this event. This parameter is optional (set to
string.Empty or null if not required).

Unlike V4 of the Usage Intelligence SDK, there is no concept of extended names
(for eventCategory and eventName). The content of eventCategory and
eventName is conditioned and validated (after conditioning) with the following
rules:

• Conditioning—All leading white space is removed.

• Conditioning—All trailing white space is removed.

• Conditioning—All internal white spaces other than space characters (' ') are
removed.

• Conditioning—Trimmed to a maximum of 128 UTF-8 characters.

• Validation—eventCategory can be empty; eventName cannot be empty.

eventName (String) The name of the event to be tracked.

Unlike V4 of the Usage Intelligence SDK, there is no concept of extended names
(for eventCategory and eventName). The content of eventCategory and
eventName is conditioned and validated (after conditioning) with the following
rules:

• Conditioning—All leading white space is removed.

• Conditioning—All trailing white space is removed.

• Conditioning—All internal white spaces other than space characters (' ') are
removed.

• Conditioning—Trimmed to a maximum of 128 UTF-8 characters.

• Validation—eventCategory can be empty; eventName cannot be empty.

customValue (String) A text custom value related to this particular event. Trimmed to a maximum
length determined by the Server. Current default maximum is 4096 UTF-8
characters.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 51

Chapter 5 Feature / Event Tracking
Logging a Normal Event with a String Field
Returns

The RUISDK.TrackEventText function returns a RUIResult enum value with the following possible values.

sessionID (String) If multiple user sessions are supported within the application
(multiSessionEnabled = true), this should contain the unique ID that refers to
the user session in which the event occurred. It must be a current valid value used
in RUISDK.StartSession.

If the application supports only a single session (multiSessionEnabled = false),
then this value should be empty.

Table 5-6 • RUISDK.TrackEventText Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

suspended Instance has been instructed by Server to back-off. Will return to Running
once back-off cleared.

permanentlyDisabled Instance has been instructed by Server to disable. This is permanent,
irrecoverable state.

sdkOptedOut Instance has been instructed by the application to opt-out.

configNotCreated Configuration has not been successfully created.

sdkNotStarted SDK has not been successfully started.

sdkAlreadyStopped SDK has already been successfully stopped.

invalidSessionIDExpectedEmpty The sessionID is expected to be empty, and it was not.

invalidSessionIDExpectedNonEmpty The sessionID is expected to be non-empty, and it was not.

invalidSessionIDTooShort The sessionID violates its allowable minimum length.

invalidSessionIDTooLong The sessionID violates its allowable maximum length.

invalidSessionIDAlreadyActive The sessionID is already currently in use.

invalidParameterExpectedNonEmpty Some API parameter is expected to be non-empty, and is not.

Table 5-5 • RUISDK.TrackEventText Parameters

Parameter Description
52 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 5 Feature / Event Tracking
Logging a Custom Event
Logging a Custom Event
The RUISDK.TrackEventCustom function logs a normal event with the supplied data, including an array of custom name/
value pairs.

The RUISDK.TrackEventCustom function can be called between RUISDK.StartSDK and RUISDK.StopSDK, and can be called
zero or more times.

The RUISDK.TrackEventCustom function can be called while a New Registration is being performed
(RUISDK.CreateConfig, RUISDK.StartSDK). However, the event data is not written to the log file until the New Registration
completes, and if the New Registration fails, the data will be lost.

The RUISDK.TrackEventCustom function is an asynchronous function, returning immediately with further functionality
executed on separate thread(s).

Note • Custom data will be logged in the format (Key1,Value1)&&(Key2,Value2)…&&(KeyN,ValueN).

 RUISDK.TrackEventCustom
RUIResult RUISDK.TrackEventCustom (String eventCategory, String eventName, List<RUINameValuePair>
customValues, String sessionID = "")

Parameters

The RUISDK.TrackEventCustom function has the following parameters.

Table 5-7 • RUISDK.TrackEventCustom Parameters

Parameter Description

eventCategory (String The name of the category of this event. This parameter is optional (set to
string.Empty or null if not required).

Unlike V4 of the Usage Intelligence SDK, there is no concept of extended
names (for eventCategory and eventName). The content of eventCategory
and eventName is conditioned and validated (after conditioning) with the
following rules:

• Conditioning—All leading white space is removed.

• Conditioning—All trailing white space is removed.

• Conditioning—All internal white spaces other than space characters
(' ') are removed.

• Conditioning—Trimmed to a maximum of 128 UTF-8 characters.

• Validation—eventCategory can be empty; eventName cannot be
empty.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 53

Chapter 5 Feature / Event Tracking
Logging a Custom Event
Returns

The RUISDK.TrackEventCustom function returns a RUIResult enum value with the following possible values.

eventName (String) The name of the event to be tracked.

Unlike V4 of the Usage Intelligence SDK, there is no concept of extended
names (for eventCategory and eventName). The content of eventCategory
and eventName is conditioned and validated (after conditioning) with the
following rules:

• Conditioning—All leading white space is removed.

• Conditioning—All trailing white space is removed.

• Conditioning—All internal white spaces other than space characters
(' ') are removed.

• Conditioning—Trimmed to a maximum of 128 UTF-8 characters.

• Validation—eventCategory can be empty; eventName cannot be
empty.

customValues (List<RUINameValuePair) A list of name/value String pairs related to this particular event. The
RUINameValuePair class has two members:

• public String name—Custom data associated with the event. A
given name and/or value can be empty. A given name cannot contain
white space. All names and values are trimmed to a maximum length
configured on the Server. Both names and values have a default
maximum of 128 UTF-8 characters.

• public String value—Custom text data associated with the event,
cannot be empty. Trimmed to a maximum length determined by the
Server. Both names and values have a default maximum of 128 UTF-8
characters.

sessionID (String) If multiple user sessions are supported within the application
(multiSessionEnabled = true), this should contain the unique ID that
refers to the user session in which the event occurred. It must be a current
valid value used in ruiStartSession.

If the application supports only a single session (multiSessionEnabled =
false), then this value should be empty.

Table 5-8 • RUISDK.TrackEventCustom Returns

Return Description

ok Synchronous functionality successful.

Table 5-7 • RUISDK.TrackEventCustom Parameters

Parameter Description
54 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 5 Feature / Event Tracking
Logging a Custom Event
sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

suspended Instance has been instructed by Server to back-off. Will return to Running
once back-off cleared.

permanentlyDisabled Instance has been instructed by Server to disable. This is permanent,
irrecoverable state.

sdkOptedOut Instance has been instructed by the application to opt-out.

configNotCreated Configuration has not been successfully created.

sdkNotStarted SDK has not been successfully started.

sdkAlreadyStopped SDK has already been successfully stopped.

invalidSessionIDExpectedEmpty The sessionID is expected to be empty, and it was not.

invalidSessionIDExpectedNonEmpty The sessionID is expected to be non-empty, and it was not.

invalidSessionIDTooShort The sessionID violates its allowable minimum length.

invalidSessionIDTooLong The sessionID violates its allowable maximum length.

invalidSessionIDNotActive The sessionID is not currently in use.

invalidParameterExpectedNonEmpty Some API parameter is expected to be non-empty, and is not.

Table 5-8 • RUISDK.TrackEventCustom Returns

Return Description
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 55

Chapter 5 Feature / Event Tracking
Logging a Custom Event
56 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

6

ReachOut Direct-to-Desktop

Messaging Service
From the Usage Intelligence dashboard, you can create ReachOut messaging campaigns that are used to deliver messages
or surveys directly to the desktop of users who are running your software. You may choose a specific target audience for
your message by defining a set of delivery filters so that each message will be delivered only to those users who match the
specified criteria (such as geographical region, edition, version, build, language, OS, license status, runtime duration, days
since install, etc.)

When building a ReachOut campaign you can choose between two message delivery options.

• Automated HTML pop-up messages (handled entirely by the Usage Intelligence library and requires absolutely NO
coding.) Currently this is only available on Windows and macOS. For more information, see Automated Message
Retrieval.

• Manually retrieving the message (plain text or URL) through code by using the RUISDK.CheckForReachOut or
RUISDK.CheckForReachOutOfType functions. For more information, see Manual Message Retrieval.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 57

Chapter 6 ReachOut Direct-to-Desktop Messaging Service
Automated Message Retrieval
Automated Message Retrieval
The Usage Intelligence V5 SDK provides a default, automated ReachOut handler that works on Windows and macOS.
Developers can override this handler by implementing the ReachOut handler interface with their own code and providing
this handler to the RUISDK.SetReachOutHandler function after the creation of the RUISDK object. In brief, the
RUIReachOutHandler class has three abstract methods that must be implemented:

The RUISDK.SetReachOutHandler function sets a custom ReachOut handler. Any previously registered handler, including
the default graphical ReachOut handler that may have been registered (RUISDK). Setting a handler to NULL effectively
removes the current handler, if any, without setting a new handler.

RUISDK.SetReachOutHandler can be called more than once.

RUISDK.SetReachOutHandler is a synchronous function, returning when all functionality is completed.

RUISDK.SetReachOutHandler
RUIResult RUISDK.SetReachOutHandler (RUIReachOutHandler handler)

Table 6-1 • Functions Required to Support Custom ReachOut

Function Description

abstract public void Handle(String width, String height,
Int32 position, String message)

Responsible for handling (displaying) the
ReachOut message. The parameters are:

• width—Width of the window as configured
in the ReachOut campaign. Value will be
suffixed by P for pixels or % for percentage.

• height—Height of the window as
configured in the ReachOut campaign.
Value will be suffixed by P for pixels or %
for percentage.

• position—Position where the window
should be displayed (1 = top-left, 2 = top-
center, 3 = top-right, 4 = middle-left, 5 =
middle-center, 6 = middle right, 7 =
bottom-left, 8 = bottom-center, 9 =
bottom-right).

• message—URL to display.

abstract public int GetReadyForNext() Called by the SDK to see if the handler is ready
for the next ReachOut message. A zero value
indicates not ready, non-zero indicates ready.

abstract public void Close() Called by SDK when stopping or shutting down
the SDK.
58 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 6 ReachOut Direct-to-Desktop Messaging Service
Manual Message Retrieval
Parameters

The RUISDK.SetReachOutHandler function has the following parameters.

Returns

The RUISDK.SetReachOutHandler function returns a RUIResult enum value with the following possible values.

Manual Message Retrieval
When you want full control on when and where in your application to display a ReachOut message to your users, you can
define ReachOut messages of the type plain text or URL. From within the application call one of the below functions to
check with the Usage Intelligence server whether there are any pending messages (of this type) waiting to be delivered.

You may choose to display plain text messages anywhere in the application such as in a status bar or information box. URL
type messages can either be opened in a browser or else rendered it in a HTML previewer embedded within the application.

The difference between RUISDK.CheckForReachOut and RUISDK.CheckForReachOutOfType is that
RUISDK.CheckForReachOut takes an ‘empty’ messageType parameter and fills it with the type of message that is sent by the
server. In the case of RUISDK.CheckForReachOutOfType, the message type is specified by the developer and the server
would then only send messages of that type.

The message type (plain text or URL) can be one of the types from the following RUIMessageType enum:

any (0)
text (1)
url (2)

For more information, see the following:

Table 6-2 • RUISDK.SetReachOutHandler Parameters

Parameter Description

handler (RUIReachOutHandler An instance implementing the RUIReachOutHandler interface.

Table 6-3 • RUISDK.SetReachOutHandler Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkSuspended The Server has instructed a temporary back-off.

sdkPermanentlyDisabled The Server has instructed a permanent disable.

sdkOptedOut Instance has been instructed by the application to opt-out.

sdkAlreadyStarted SDK has already been successfully started.

sdkAlreadyStopped SDK has already been successfully stopped.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 59

Chapter 6 ReachOut Direct-to-Desktop Messaging Service
Manual Message Retrieval
• Checking for Manual ReachOut Messages of Any Type

• Checking for Manual ReachOut Messages of a Specified Type

Checking for Manual ReachOut Messages of Any Type
The RUISDK.CheckForReachOut function explicitly checks for manual ReachOut messages on the Server.
RUISDK.CheckForReachOut will check for any manual ReachOut message type, whereas RUISDK.CheckForReachOutOfType
will check for ReachOut messages of a specified type.

RUISDK.CheckForReachOut can be called between RUISDK.StartSDK and RUISDK.StopSDK, and can be called zero or more
times.

RUISDK.CheckForReachOut is a synchronous function, returning when all functionality is completed.

RUISDK.CheckForReachOut
RUIResult RUISDK.CheckForReachOut (out String message, out Int32 messageCount, out Int32 messageType)

Parameters

The RUISDK.CheckForReachOut function has the following parameters.

Returns

The RUISDK.CheckForReachOut function returns a RUIResult enum value with the following possible values.

Table 6-4 • ruiCheckForReachOut() Parameters

Parameter Description

message (out String) A string of maximum length 256 that will be filled-in by the SDK with the message
that is sent by the Server.

messageCount (out Int32) Receives the message count (including returned message).

messageType (out Int32) Receives the type of returned message. Can be either ‘text’ or ‘url’ from the
ref:RUIMessageType enum.

Table 6-5 • RUISDK.CheckForReachOut Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

suspended Instance has been instructed by Server to back-off. Will return to Running
once back-off cleared.
60 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 6 ReachOut Direct-to-Desktop Messaging Service
Manual Message Retrieval
Code Example

The following example gets all of the messages on the server, checks if it is a text or URL message and displays the
appropriate message box.

// Create instance
bool registerDefaultReachOut = true;
String ruiSDKDLLPath = "<path to Usage Intelligence SDK .NET library>";
RUISDK mySDK = new RUISDK(registerDefaultReachOut, ruiSDKDLLPath);
// Other initialization.....

string message = "";
Int32 msgType;
Int32 msgCount = 0;

while (mySDK.CheckForReachOut(out message, out msgCount, out msgType) == RUIResult.ok &&
 msgCount > 0) {

if (msgType == (Int32)RUIMessageType.text) {
MessageBox.Show("TEXT Message" + message);

} else if (msgType == (Int32)RUIMessageType.url){
MessageBox.Show("URL Message" + message);

}
}

Checking for Manual ReachOut Messages of a Specified Type
The RUISDK.CheckForReachOutOfType function explicitly checks for manual ReachOut messages on the Server.
RUISDK.CheckForReachOutOfType will check for manual ReachOut messages of the specified type, whereas
RUISDK.CheckForReachOut will check for manual ReachOut messages of any type.

permanentlyDisabled Instance has been instructed by Server to disable. This is permanent,
irrecoverable state.

sdkOptedOut Instance has been instructed by the application to opt-out.

configNotCreated Configuration has not been successfully created.

sdkNotStarted SDK has not been successfully started.

sdkAlreadyStopped SDK has already been successfully stopped.

timeThresholdNotReached The API call frequency threshold (set by the Server) has not been reached.

networkConnectionError Not able to reach the Server.

networkServerError Error while communicating with the Server.

networkResponseInvalid Message format error while communicating with the Server.

Table 6-5 • RUISDK.CheckForReachOut Returns

Return Description
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 61

Chapter 6 ReachOut Direct-to-Desktop Messaging Service
Manual Message Retrieval
RUISDK.CheckForReachOutOfType can be called between RUISDK.StartSDK and RUISDK.StopSDK, and can be called zero or
more times.

RUISDK.CheckForReachOutOfType is a synchronous function, returning when all functionality is completed.

RUISDK.CheckForReachOutOfType
RUIResult RUISDK.CheckForReachOutOfType (String message, out Int32 messageCount, Int32
messageTypeExpected)

Parameters

The RUISDK.CheckForReachOutOfType function has the following parameters.

Returns

The RUISDK.CheckForReachOutOfType function returns a RUIResult enum value with the following possible values.

Table 6-6 • RUISDK.CheckForReachOutOfType Parameters

Parameter Description

message (String) A string of maximum length 256 that will be filled-in by the SDK with the message
that is sent by the server.

messageCount (out Int32) Receives the message count (including returned message).

messageTypeExpected (Int32) This value is filled by the developer and should contain the type of message that is
being requested. This must be one of the RUIMessageType enum values.

Table 6-7 • RUISDK.CheckForReachOutOfType Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

suspended Instance has been instructed by Server to back-off. Will return to Running
once back-off cleared.

permanentlyDisabled Instance has been instructed by Server to disable. This is permanent,
irrecoverable state.

sdkOptedOut Instance has been instructed by the application to opt-out.

configNotCreated Configuration has not been successfully created.

sdkNotStarted SDK has not been successfully started.
62 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 6 ReachOut Direct-to-Desktop Messaging Service
Manual Message Retrieval
Code Example

This example gets all text messages from the server and displays them inside of a message box.

bool registerDefaultReachOut = true;
String ruiSDKDLLPath = "<path to Revulytics Usage Intelligence SDK .NET library>";
RUISDK mySDK = new RUISDK(registerDefaultReachOut, ruiSDKDLLPath);
// Other initialization.....

String message = "";
Int32 msgCount = 0

while (mySDK.CheckForReachOutOfType(out message, out msgCount, (Int32)RUIMessageType.text) ==
RUIResult.ok &&

 msgCount > 0) {
MessageBox.Show(message);

}

sdkAlreadyStopped SDK has already been successfully stopped.

invalidMessageType The messageType is not an allowable value.

timeThresholdNotReached The API call frequency threshold (set by the Server) has not been reached.

networkConnectionError Not able to reach the Server.

networkServerError Error while communicating with the Server.

networkResponseInvalid Message format error while communicating with the Server.

Table 6-7 • RUISDK.CheckForReachOutOfType Returns

Return Description
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 63

Chapter 6 ReachOut Direct-to-Desktop Messaging Service
Manual Message Retrieval
64 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

7

Exception Tracking
Usage Intelligence is able to collect runtime exceptions from your application and then produce reports on the exceptions
that were collected. Once an exception is tracked, Usage Intelligence will also save a snapshot of the current machine
architecture so that you can later (through the on-line exception browser within the Usage Intelligence dashboard)
investigate the exception details and pinpoint any specific OS or architecture related information that are the cause of
common exceptions. Collection of exception data is done through the RUISDK.TrackException method.

The RUISDK.TrackException function logs an exception event with the supplied data.

RUISDK.TrackException can be called between RUISDK.StartSDK and RUISDK.StopSDK, and can be called zero or more
times.

RUISDK.TrackException can be called while a New Registration is being performed (RUISDK.CreateConfig,
RUISDK.StartSDK). However, the event data is not written to the log file until the New Registration completes, and if the
New Registration fails, the data will be lost.

RUISDK.TrackException is an asynchronous function, returning immediately with further functionality executed on
separate thread(s).

RUISDK.TrackException
RUIResult RUISDK.TrackException (RUIExceptionEvent exceptionData, String sessionID = “”)
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 65

Chapter 7 Exception Tracking
Parameters

The RUISDK.TrackException function has the following parameters.

Table 7-1 • RUISDK.TrackException Parameters

Parameter Description

exceptionData (RUIExceptionEvent) The exception data to log:

• className—Class catching exception. Content conditioning and
validation rules above.

• methodName—Method catching exception. Content conditioning and
validation rules above.

• message—Exception message. No content restrictions, but trimmed
to a maximum length determined by the Server.

• stackTrace—Exception stack trace. No content restrictions, but
trimmed to a maximum length determined by the Server.

• sessionID (String)—An optional session ID.

The content of exceptionData.className and
exceptionData.methodName are conditioned and validated (after
conditioning) with the following rules:

• Conditioning—All leading white space is removed.

• Conditioning—All trailing white space is removed.

• Conditioning—All internal white spaces other than space characters
(‘ ‘) are removed.

• Conditioning—Trimmed to a maximum of 128 UTF-8 characters.

• Validation—Cannot be empty.

sessionID (String) An optional session ID.

Different than V4 of the Usage Intelligence (Trackerbird) SDK,
RUISDK.TrackException accepts a sessionID parameter. The usage
requirements of the sessionID parameter are the following:

• If multiple user sessions are supported within the application
(multiSessionEnabled = true), sessionID must be a current valid
value used in RUISDK.StartSession, or it can be empty. This is
different than normal event tracking APIs, whereby an empty value is
not allowed.

• If the application supports only a single session
(multiSessionEnabled = false), then sessionID must be empty.
66 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 7 Exception Tracking
Returns

The RUISDK.TrackException function returns a RUIResult enum value with the following possible values.

Code Example

The following is a code example of RUISDK.TrackException inside of a try catch statement so that Usage Intelligence can
record it.

// Create instance
bool registerDefaultReachOut = true;
String ruiSDKDLLPath = "<path to Usage Intelligence SDK .NET library>";
mySDK = new RUISDK(registerDefaultReachOut, ruiSDKDLLPath);
// Other initialization.....

private void btnSave_Click(object sender, EventArgs e)
{

try

Table 7-2 • RUISDK.TrackException Returns

Return Description

ok Synchronous functionality successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

suspended Instance has been instructed by Server to back-off. Will return to Running
once back-off cleared.

permanentlyDisabled Instance has been instructed by Server to disable. This is permanent,
irrecoverable state.

sdkOptedOut Instance has been instructed by the application to opt-out.

configNotCreated Configuration has not been successfully created.

sdkNotStarted SDK has not been successfully started.

sdkAlreadyStopped SDK has already been successfully stopped.

invalidSessionIDExpectedEmpty The sessionID is expected to be empty, and it was not.

invalidSessionIDTooShort The sessionID violates its allowable minimum length.

invalidSessionIDTooLong The sessionID violates its allowable maximum length.

invalidSessionIDNotActive The sessionID is not currently in use.

invalidParameterExpectedNonEmpty Some API parameter is expected to be non-empty, and is not.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 67

Chapter 7 Exception Tracking
{
//Save Button Logic

}
catch (Exception ex)
{

RUIExceptionEvent myRUIExceptionData = new RUIExceptionEvent("Form1", ex.TargetSite, ex.Message,
ex.StackTrace);

mySDK.TrackException(myRUIExceptionData);
}

}

68 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

8

License Management
Usage Intelligence allows you to maintain your own license key registry on the Usage Intelligence server in order to track
license key usage and verify the status/validity of license keys used on your clients.

There are multiple ways that the key registry is populated with license keys:

• Keys are collected automatically from your clients whenever you call the RUISDK.SetLicenseKey function.

• You can add/edit keys manually via the Usage Intelligence dashboard.

• You can add/edit keys directly from your CRM by using the Usage Intelligence Web API.

For more information, see:

• Client vs. Server Managed Licensing

• Checking the License Data of the Supplied License Key

• Setting the Current License to the Supplied License Key

Client vs. Server Managed Licensing
Usage Intelligence gives you the option to choose between managing your license key status (i.e. Blocked, Allowed, Expired
or Activated) and key type on the server (server managed) or managing this status through the application (client
managed). Applications can individually set whether each license status or license type is either Sever Managed or Client
Managed by visiting the License Key Management Settings page on the Usage Intelligence dashboard. The major
difference is outlined below:

Client Managed

The server licensing mechanism works in reporting-only mode and your application is expected to notify the server that
the license status has changed through the use of RUI.SetLicenseData.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 69

Chapter 8 License Management
Checking the License Data of the Supplied License Key
When to Use

Use client managed when you have implemented your own licensing module/mechanism within your application that can
identify whether the license key used by this client is blocked, allowed, expired or activated. In this case you do not need to
query the Usage Intelligence server to get this license status. However you can simply use this function to passively inform
Usage Intelligence about the license status used by the client. In this case:

• Usage Intelligence will use this info to filter and report the different key types and statuses and their activity.

• Usage Intelligence licensing server will operate in passive mode (i.e. reporting only).

• Calling RUISDK.CheckLicenseKey will return the license type and flags as Unknown (-1).

Server Managed

You manage the key status on the server side and your application queries the server to determine the status of a particular
license key by calling RUISDK.CheckLicenseKey or RUISDK.SetLicenseKey.

When to Use

Use server managed if you do not have your own licensing module/mechanism within your application and thus you have
no way to identify the license status at the client side.

In this mode, whenever a client changes their license key your application can call RUISDK.SetLicenseKey to register the
new license key. In reply to this API call, the server will check if the license key exists on the key register and in the reply it
will specify to your application whether this key is flagged as blocked, allowed, expired or activated, along with the type of
key submitted. If you want to verify a key without actually registering a key change for this client you can use
RUISDK.CheckLicenseKey which returns the same values but does not register this key with the server. In this case:

• The key register is maintained manually on the server by the software owner

• Usage Intelligence licensing server will operate in active mode so apart from using this key info for filtering and
reporting, it will also report back the key status (validity) to the SDK whenever requested through the API.

• Calling RUISDK.CheckLicenseKey or RUISDK.SetLicenseKey will return the 4 status flags denoting whether a
registered key is: Blocked, Allowed, Expired and Activated and the key type.

• If the key does not exist on the server, all 4 status flags will be returned as false (0).

Checking the License Data of the Supplied
License Key

The RUISDK.CheckLicenseKey function checks the Server for the license data for the supplied licenseKey. Whereas
RUISDK.CheckLicenseKey is a passive check, RUISDK.SetLicenseKey changes the license key. The license array has size,
indexes and values as specified in RUISDKDefines.h.

Note • The order of the license array data has changed from the Usage Intelligence (Trackerbird) SDK V4.

The RUISDK.CheckLicenseKey function can be called between RUISDK.StartSDK and RUISDK.StopSDK, and can be called
zero or more times.

The RUISDK.CheckLicenseKey function is a synchronous function returning when all functionality is completed.
70 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 8 License Management
Checking the License Data of the Supplied License Key
RUISDK.CheckLicenseKey
RUIResult RUISDK.CheckLicenseKey (String licenseKey, out List<Int32> licenseArray)

Parameters

The RUISDK.CheckLicenseKey function has the following parameters.

Table 8-1 • RUISDK.CheckLicenseKey Parameters

Parameter Description

licenseKey (String) The license key to be checked. This value cannot be empty.

The function accepts a String parameter that is the license key itself
and a List<Int32> array of length 5 that it fills with the returned result.
You may use the following constants to refer to the required value by
its index from the RUILicenseKeyIndex enum:

typeIndex (0)
expiredIndex (1)
activeIndex (2)
blockedIndex (3)
allowedIndex (4)

Each of the values 1 through 5 will be set to either 0 or 1 that refers to
false or true respectively. The first value
(RUILicenseKeyIndex.typeIndex) will be set to a number between 0
and 7 (inclusive) that refers to the 8 possible license types listed below.
The values may also be -1 that means “Unknown”.

The following are the possible license types from the
RUILicenseKeyType enum:

unchanged (-1) - Key Type is Unchanged (when in parameter)
or Unknown (when out parameter)

evaluation (0)
purchased (1)
freeware (2)
unknown (3)
nfr (4) - Key Type is Not For Resale
custom1 (5)
custom2 (6)
custom3 (7)

The following are the possible key status values from the
RUILicenseKeyStatus enum:

• unchanged (-1)—Key Status is Unchanged (when in parameter)
or Unknown (when out parameter).

• no (0)—Key Status is No.

• yes (1)—Key Status is Yes.

licenseArray (List<Int32> length of 5) The vector that will be filled to contain the license status flags.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 71

Chapter 8 License Management
Checking the License Data of the Supplied License Key
Returns

The RUISDK.CheckLicenseKey function returns a RUIResult enum value with the following possible values.

Code Example

//Test a license key
mySDK.StartSDK(); //...; //Creation and initialization shown in other snippets.
String myProductKey = "xyz";
List<Int32> licenseResult;

RUIResult rc = mySDK.CheckLicenseKey(myProductKey, out licenseResult);
if(rc == RUIResult.ok)
{

if (licenseResult[(Int32)RUILicenseKeyIndex.typeIndex] == (Int32)RUILicenseKeyType.unchanged) {
MessageBox.Show("License Key is unchanged");

} else {

Table 8-2 • RUISDK.CheckLicenseKey Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

suspended Instance has been instructed by Server to back-off. Will return to Running
once back-off cleared.

permanentlyDisabled Instance has been instructed by Server to disable. This is permanent,
irrecoverable state.

sdkOptedOut Instance has been instructed by the application to opt-out.

configNotCreated Function validation: Configuration has not been successfully created.

sdkNotStarted Function validation: SDK has not been successfully started.

sdkAlreadyStopped Function validation: SDK has already been successfully stopped.

invalidParameterExpectedNonEmpty Some API parameter is expected to be non-empty, and is not.

timeThresholdNotReached Function validation: The API call frequency threshold (set by the Server) has
not been reached.

networkConnectionError Not able to reach the Server.

networkServerError Error while communicating with the Server.

networkResponseInvalid Message format error while communicating with the Server.
72 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 8 License Management
Setting the Current License to the Supplied License Key
String myType = "License type = " +
(licenseResult[(Int32)RUILicenseKeyIndex.typeIndex]).ToString();

MessageBox.Show(myType);
}
//Check if the license key is activated
if (licenseResult[(Int32)RUILicenseKeyIndex.activeIndex] == (Int32)RUILicenseKeyStatus.yes){

MessageBox.Show("License Active");
} else if (licenseResult[(Int32)RUILicenseKeyIndex.activeIndex] == (Int32)RUILicenseKeyStatus.no) {

MessageBox.Show("License Inactive");
} else {

MessageBox.Show("License status unknown");
}

//check if license key is blocked
if (licenseResult[(Int32)RUILicenseKeyIndex.blockedIndex] == (Int32)RUILicenseKeyStatus.yes){

MessageBox.Show("Key is blocked");
} else if (licenseResult[(Int32)RUILicenseKeyIndex.blockedIndex] == (Int32)RUILicenseKeyStatus.no) {

MessageBox.Show("Key is NOT blocked");
} else {

MessageBox.Show("Key blocked status is unknown");
}

//Check if license key is expired
if (licenseResult[(Int32)RUILicenseKeyIndex.expiredIndex] == (Int32)RUILicenseKeyStatus.yes){

MessageBox.Show("Key is expired");
} else if (licenseResult[(Int32)RUILicenseKeyIndex.expiredIndex] == (Int32)RUILicenseKeyStatus.no) {

MessageBox.Show("Key is NOT expired");
} else {

MessageBox.Show("Key expiration status is unknown");
}

//Check if license key is allowed
if (licenseResult[(Int32)RUILicenseKeyIndex.allowedIndex] == (Int32)RUILicenseKeyStatus.yes){

MessageBox.Show("Key is allowed");
} else if (licenseResult[(Int32)RUILicenseKeyIndex.allowedIndex] == (Int32)RUILicenseKeyStatus.no) {

MessageBox.Show("Key is NOT on allowed list");
} else {

MessageBox.Show("Key allowed status is unknown");
}

} else {
MessageBox.Show("Failed to invoke function RUISDK.CheckLicenseKey()");

}

Setting the Current License to the Supplied
License Key

The RUISDK.SetLicenseKey function checks the Server for the license data for the supplied licenseKey and sets the
current license to licenseKey.

Whereas RUISDK.CheckLicenseKey is a passive check, RUISDK.CheckLicenseKey changes the license key. The Server
always registers the licenseKey even if the Server knows nothing about the licenseKey.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 73

Chapter 8 License Management
Setting the Current License to the Supplied License Key
When a new (unknown) licenseKey is registered, the Server sets the license data to RUILicenseKeyType.unknown and the
four status flags (blocked, allowed, expired, activated) to RUILicenseKeyStatus.no. The license array has size, indexes and
values as specified in RUISDKCS.cs.

Note • The order of the license array data has changed from the Usage Intelligence SDK V4.

The RUISDK.SetLicenseKey function can be called between RUISDK.StartSDK and RUISDK.StopSDK, and can be called zero
or more times.

The RUISDK.SetLicenseKey function is primarily a synchronous function, returning once the check with Server has
completed. Some post- processing functionality is performed asynchronously, executed on separate thread(s).

The RUISDK.SetLicenseKey function should be called when an end user is trying to enter a new license key into your
application and you would like to confirm that the key is in fact valid (i.e. blocked or allowed), active, or expired. The
function is very similar to the RUISDK.CheckLicenseKey function, however rather than just being a passive license check, it
also registers the new key with the server and associates it with this particular client installation.

RUISDK.SetLicenseKey
RUIResult RUISDK.SetLicenseKey (String newKey, out List<Int32> licenseArray, String sessionID = “”)
74 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 8 License Management
Setting the Current License to the Supplied License Key
Parameters

The RUISDK.SetLicenseKey function has the following parameters.

Table 8-3 • RUISDK.SetLicenseKey Parameters

Parameter Description

licenseKey (String) The license key to be checked. This value cannot be empty.

The function accepts a String parameter that is the license key itself
and a List<Int32> array of length 5 that it fills with the returned result.
You may use the following constants to refer to the required value by
its index from the RUILicenseKeyIndex enum:

typeIndex (0)
expiredIndex (1)
activeIndex (2)
blockedIndex (3)
allowedIndex (4)

Each of the values 1 through 5 will be set to either 0 or 1 that refers to
false or true respectively. The first value
(RUILicenseKeyIndex.typeIndex) will be set to a number between 0
and 7 (inclusive) that refers to the 8 possible license types listed below.
The values may also be -1 that means “Unknown”.

The following are the possible license types from the
RUILicenseKeyType enum:

unchanged (-1) - Key Type is Unchanged (when in parameter)
or Unknown (when out parameter)

evaluation (0)
purchased (1)
freeware (2)
unknown (3)
nfr (4) - Key Type is Not For Resale
custom1 (5)
custom2 (6)
custom3 (7)

The following are the possible key status values:

• unchanged (-1)—Key Status is Unchanged (when in parameter) or
Unknown (when out parameter).

• no (0)—Key Status is No.

• yes (1)—Key Status is Yes.

licenseArray (List<Int32> of length 5) The vector that will be filled to contain the license status flags.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 75

Chapter 8 License Management
Setting the Current License to the Supplied License Key
Returns

The RUISDK.SetLicenseKey function returns a RUIResult enum value with the following possible values.

sessionID (String) An optional session ID complying with above usage (content
conditioning and validation rules in RUISDK.StartSession).

Different from the V4 of the Usage Intelligence SDK, a sessionID
parameter can be supplied (based on RUISDK.CreateConfig multi
session value):

• If multiSessionEnabled is set to false—sessionID must be
empty. This is similar to event tracking APIs.

• If multiSessionEnabled is set to true—sessionID must be a
current valid value used in RUISDK.StartSession, or it can be
empty. This is different than normal event tracking APIs, whereby
a empty value is not be allowed.

Table 8-4 • RUISDK.SetLicenseKey Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

suspended Instance has been instructed by Server to back-off. Will return to Running
once back-off cleared.

permanentlyDisabled Instance has been instructed by Server to disable. This is permanent,
irrecoverable state.

sdkOptedOut Instance has been instructed by the application to opt-out.

configNotCreated Function validation: Configuration has not been successfully created.

sdkNotStarted Function validation: SDK has not been successfully started.

sdkAlreadyStopped Function validation: SDK has already been successfully stopped.

invalidParameterExpectedNonEmpty Some API parameter is expected to be non-empty, and is not.

timeThresholdNotReached Function validation: The API call frequency threshold (set by the Server) has
not been reached.

Table 8-3 • RUISDK.SetLicenseKey Parameters

Parameter Description
76 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 8 License Management
Setting the Current License to the Supplied License Key
Code Example

//Register a new license key
bool useDefaultReachOutHandler = false;
RUISDK mySDK = new RUISDK(useDefaultReachOutHandler); //...; //Creation and initialization shown in
other snippets.
String myProductKey = "xyz";
List<Int32> licenseResult;

RUIResult rc = mySDK.SetLicenseKey(myProductKey, out licenseResult);
if(rc == RUIResult.ok)
{

if (licenseResult[(Int32)RUILicenseKeyIndex.typeIndex] == (Int32)RUILicenseKeyType.unchanged) {
MessageBox.Show("License Key is unchanged");

} else {
String myType = "License type = " +

(licenseResult[(Int32)RUILicenseKeyIndex.typeIndex]).ToString();
MessageBox.Show(myType);

}
//Check if the license key is activated
if (licenseResult[(Int32)RUILicenseKeyIndex.activeIndex] == (Int32)RUILicenseKeyStatus.yes){

MessageBox.Show("License Active");
} else if (licenseResult[(Int32)RUILicenseKeyIndex.activeIndex] == (Int32)RUILicenseKeyStatus.no) {

MessageBox.Show("License Inactive");
} else {

MessageBox.Show("License status unknown");
}

//check if license key is blocked
if (licenseResult[(Int32)RUILicenseKeyIndex.blockedIndex] == (Int32)RUILicenseKeyStatus.yes){

MessageBox.Show("Key is blocked");
} else if (licenseResult[(Int32)RUILicenseKeyIndex.blockedIndex] == (Int32)RUILicenseKeyStatus.no) {

MessageBox.Show("Key is NOT blocked");
} else {

MessageBox.Show("Key blocked status is unknown");
}

//Check if license key is expired
if (licenseResult[(Int32)RUILicenseKeyIndex.expiredIndex] == (Int32)RUILicenseKeyStatus.yes){

MessageBox.Show("Key is expired");
} else if (licenseResult[(Int32)RUILicenseKeyIndex.expiredIndex] == (Int32)RUILicenseKeyStatus.no) {

MessageBox.Show("Key is NOT expired");
} else {

MessageBox.Show("Key expiration status is unknown");
}

networkConnectionError Not able to reach the Server.

networkServerError Error while communicating with the Server.

networkResponseInvalid Message format error while communicating with the Server.

Table 8-4 • RUISDK.SetLicenseKey Returns

Return Description
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 77

Chapter 8 License Management
Setting the Current License to the Supplied License Key
//Check if license key is allowed
if (licenseResult[(Int32)RUILicenseKeyIndex.allowedIndex] == (Int32)RUILicenseKeyStatus.yes){

MessageBox.Show("Key is allowed");
} else if (licenseResult[(Int32)RUILicenseKeyIndex.allowedIndex] == (Int32)RUILicenseKeyStatus.no) {

MessageBox.Show("Key is NOT on allowed list");
} else {

MessageBox.Show("Key allowed status is unknown");
}

} else {
MessageBox.Show("Failed to invoke function RUISDK.setLicenseKey()");

}

78 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

9

Custom Properties
Apart from the pre-set values that Usage Intelligence collects, such as OS version, product version, edition, language, and
license type, you also have the ability to collect any custom value that is relevant to your specific application.

Typical examples where you can benefit from custom properties include storing the download source or marketing
campaign from where the user downloaded your software or some other status in your application. These custom
properties will then be available inside the filters panel on every report so you may use them as part of your report filtering
criteria.

Please note that custom properties are intended to store values that are not very dynamic for a particular installation since
the reporting granularity provided by Usage Intelligence is on a daily basis. This means if you use this API to register
multiple values inside the same custom property (for the same user), Usage Intelligence will only store the latest known
property value for that user on that particular day.

The RUISDK.SetCustomProperty method is used to set the value of a custom property. For more information, see Setting
Custom Property Data.

Setting Custom Property Data
The RUISDK.SetCustomProperty method is used to set the value of a custom property.

RUISDK.SetCustomProperty
RUIResult SetCustomProperty (UInt32 customPropertyID, String customValue)
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 79

Chapter 9 Custom Properties
Setting Custom Property Data
Parameters

The RUISDK.SetCustomProperty function has the following parameters.

Returns

The RUISDK.SetCustomProperty function returns a RUIResult enum value with the following possible values.

Table 9-1 • RUISDK.SetCustomProperty Parameters

Parameter Description

customPropertyId (UInt32) This is a numeric index between 1 and 20. On the Usage Intelligence dashboard,
custom values are given an ID ranging from C01 to C20. This ID is used to identify
which of the 20 possible custom value is being set.

customValue (String) The custom property value to use in Server reports; empty value clears the value.

Table 9-2 • RUISDK.SetCustomProperty Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

sdkSuspended The Server has instructed a temporary back-off.

sdkPermantelyDisabled The Server has instructed a permanent disable.

sdkOptedOut Instance has been instructed by the application to opt-out.

configNotCreated Configuration has not been successfully created.

sdkAlreadyStopped SDK has already been successfully stopped.

invalidCustomPropertyID The customPropertyID violates its allowable range.
80 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

10

SDK Status Checks
You can perform SDK status checks using the RUISDK.GetState and RUISDK.TestConnection functions.

• Getting the State of the Usage Intelligence Instance

• Testing the Connection Between the SDK and the Server

Getting the State of the Usage Intelligence
Instance

The RUISDK.GetState function returns a RUISTATE value that contains the state of the Usage Intelligence instance. The SDK
state can change asynchronously.

RUISDK.GetState can be called more than once.

RUISDK.GetState is a synchronous function, returning when all functionality is completed.

RUISDK.GetState
RUIState RUISDK.GetState ()

Returns

The RUISDK.GetState function returns a RUIResult enum value with the following possible values.

Table 10-1 • RUISDK.GetState Returns

Return Description

fatalError Irrecoverable internal fatal error. No further API calls should be made.

uninitialized Instance successfully created but not yet successfully configured
(RUISDK.CreateConfig).
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 81

Chapter 10 SDK Status Checks
Testing the Connection Between the SDK and the Server
Testing the Connection Between the SDK and the
Server

The RUISDK.TestConnection method tests the connection between the SDK and the Server. If a valid configuration file
exists (RUISDK.CreateConfig), the URL used for the test will be the one in that file, set by the Server. Otherwise, the URL
used for the test will be the one set by the client in the call to RUISDK.CreateConfig . The proxy is used during the test
(RUISDK.SetProxy).

configInitializedNotStarted Successfully configured (RUISDK.CreateConfig) and not yet started
(RUISDK.StartSDK). Will be normal start.

configMissingOrCorruptNotStarted Successfully configured (RUISDK.CreateConfig) and not yet started
(RUISDK.StartSDK). Will be a New Registration start.

startedNewRegRunning Running (RUISDK.StartSDK) with New Registration in progress, not yet
completed.

running Running (RUISDK.StartSDK) with no need for New Registration or with
successfully completed New Registration.

abortedNewRegProxyAuthFailure Aborted run (RUISDK.StartSDK) due to failed proxy authentication on
New Registration (RUISDK.CreateConfig).

abortedNewRegNetworkFailure Aborted run (RUISDK.StartSDK) due to failed New Registration
(RUISDK.CreateConfig).

abortedNewRegFailed Aborted run (RUISDK.StartSDK) due to failed New Registration
(RUISDK.CreateConfig).

suspended Instance has been instructed by Server to back-off. Will return to
Running once back-off cleared.

permanentlyDisabled Instance has been instructed by Server to disable. This is permanent,
irrecoverable state.

optedOut Instance has been instructed by the application to opt-out.

stoppingNonSync Stop in progress (RUISDK.StopSDK). Stopping non-Sync-related threads.

stoppingAll Stop in progress (RUISDK.StopSDK). Stopping Sync-related threads.

stopped Stop completed (RUISDK.StopSDK).

Table 10-1 • RUISDK.GetState Returns

Return Description
82 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 10 SDK Status Checks
Testing the Connection Between the SDK and the Server
This method allows you to test your application’s connectivity with the Usage Intelligence server and to confirm that your
CallHome URL is active and operational (for debugging purposes when using a custom CallHome URL). You do NOT need to
call this method before other API calls since this would cause unnecessary traffic on your clients’ machines. Instead, you
should check the return types by each API call since every API call that requires server communication does its own
connection status check and returns any connection errors as part of its return type.

RUISDK.TestConnection can be called between RUISDK.CreateConfig and RUISDK.StopSDK and can be called zero or
more times.

RUISDK.TestConnection is a synchronous function, returning when all functionality is completed.

RUISDK.TestConnection
RUIResult RUISDK.TestConnection ()

Returns

The RUISDK.TestConnection method returns a RUIResult enum value with the following possible values.

Table 10-2 • RUISDK.TestConnection Returns

Return Description

ok Function successful.

sdkInternalErrorFatal Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted A required New Registration has failed, and hence the SDK is aborted.
RUISDK.StopSDK and RUISDK destructor are possible.

sdkPermanentlyDisabled Instance has been instructed by Server to disable. This is permanent,
irrecoverable state.

sdkOptedOut Instance has been instructed by the application to opt-out.

configNotCreated Configuration has not been successfully created.

sdkNotStarted SDK has not been successfully started.

sdkAlreadyStopped SDK has already been successfully stopped.

networkConnectionError Not able to reach the Server.

networkServerError Error while communicating with the Server.

networkResponseInvalid Message format error while communicating with the Server.

testConnectionInvalidProductID Invalid ProductID.

testConnectionMismatch Mismatch between URL and ProductID.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 83

Chapter 10 SDK Status Checks
Testing the Connection Between the SDK and the Server
84 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

11

Common Function Return Values
This section lists common return values for Usage Intelligence functions.

ok(0)

Function (which may be synchronous or asynchronous), fully successful during synchronous functionality.

sdkInternalErrorFatal(-999)

Irrecoverable internal fatal error. No further API calls should be made.

sdkAborted(-998)

A required New Registration has failed, and hence the SDK is aborted. RUISDK.StopSDK and RUISDK destructor possible.

invalidSDKObject(-100)

SDK Instance parameter is NULL or invalid. Not used in C# interface.

invalidParameterExpectedNonEmpty(-111)

Some API parameter is expected to be non-empty, and is not.

invalidParameterExpectedNoWhitespace(-113)

Some API parameter is expected to be free of white space, and is not.

invalidParameterTooLong(-114)

Some API parameter violates its allowable maximum length.

invalidConfigPath(-120)

The configFilePath is not a well-formed directory name.

invalidConfigPathNonexistentDir(-121)

The configFilePath identifies a directory that does not exist.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 85

Chapter 11 Common Function Return Values
invalidConfigPathNotWritable(-122)

The configFilePath identifies a directory that is not writable.

invalidProductID(-130)

The productID is not a well-formed Product ID.

invalidServerURL(-140)

The serverURL is not a well-formed URL.

invalidProtocol(-144)

The protocol is not a legal value. Must be one of the following:

invalidAESKeyExpectedEmpty(-145)

The AES Key is expected to be NULL/empty, and it is not. This occurs if https is used at the protocol selection and an AES
Key is supplied.

invalidAESKeyLength(-146)

The AES Key is not the expected length (32 hex chars). An AES key is required if using httpPlusEncryption or
httpsWithFallback as the protocol choice.

invalidAESKeyFormat(-147)

The AES Key is not valid hex encoding. String passed must only include hexadecimal characters.

invalidSessionIDExpectedEmpty(-150)

The sessionID is expected to be empty, and it was not. This occurs if a session ID is passed to functions that accept a
session ID but no RUISDK.StartSession is active.

invalidSessionIDExpectedNonEmpty(-151)

The sessionID is expected to be non-empty, and it was empty.

invalidSessionIDTooShort(-152)

The sessionID violates its allowable minimum length. Minimum length is 10.

Table 11-1 • Protocol Values

Protocol Description

httpPlusEncryption (1) Protocol to the Server is HTTP + AES-128 Encrypted payload.

httpsWithFallback (2) Protocol to the Server is HTTPS, unless that doesn't work, falling back
to HTTP + Encryption.

https (3) Protocol to the Server is HTTPS with no fall-back.
86 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 11 Common Function Return Values
invalidSessionIDTooLong(-153)

The sessionID violates its allowable maximum length. Maximum length is 64.

invalidSessionIDAlreadyActive(-154)

The sessionID is already currently in use.

invalidSessionIDNotActive(-155)

The sessionID is not currently in use.

invalidCustomPropertyID(-160)

The customPropertyID violates its allowable range. By default the range is 1 to 20.

invalidDoSyncValue(-170)

The doSync manual sync flag/limit violates its allowable range.

invalidMessageType(-180)

The messageType is not an allowable value.

invalidProxyCredentials(-190)

The proxy username and password failed proxy authentication.

invalidProxyPort(-191)

The proxy port was not valid.

configNotCreated(-200)

Configuration has not been successfully created. The function RUISDK.CreateConfig must be called before performing this
operation.

configAlreadyCreated(-201)

Configuration has already been successfully created. A previous RUISDK.CreateConfig was successful and the subsequent
calls to this function are not allowed.

sdkNotStarted(-210)

SDK has not been successfully started. The function RUISDK.StartSDK must be called before using this function.

sdkAlreadyStarted(-211)

SDK has already been successfully started. A previous RUISDK.StartSDK was successful and subsequent calls to this
function are not allowed.

sdkAlreadyStopped(-213)

SDK has already been successfully stopped. A previous RUISDK.StopSDK was successful and subsequent calls to this
function are not allowed.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 87

Chapter 11 Common Function Return Values
functionNotAvail(-300)

This indicates that this particular API call is not currently available. Possible causes include:

• This feature is disabled from the server side. If this is an optional feature you might need to turn it on from the Usage
Intelligence dashboard.

• You have called this function too many times in quick succession from the same client. In order to prevent abuse
the server might impose a minimum interval (time threshold) before you can call this function again. This interval can
vary from seconds to minutes.

• There has been a time out on this request to the Usage Intelligence server.

syncAlreadyRunning(-310)

A sync with the Server is already running. Only one sync operation may be running at a time.

timeThresholdNotReached(-320)

The API call time frequency threshold (set by the Server) has not been reached. In other words, the application is
generating too many requests per time period.

sdkSuspended(-330)

The Server has instructed a temporary back-off. No events are logged but future communication with the Server is possible
if the server allows it.

sdkPermanentlyDisabled(-331

The Server has instructed a permanent disable. No communication with the server is possible and events will not be
logged.

sdkOptedOut(-332)**

Instance has been instructed by the application to opt-out.

networkConnectionError(-400)

Communication attempts were not able to reach the Server. This means there was a problem communicating with the
Usage Intelligence server due to:

• Network connectivity problems

• Incorrect proxy settings

• HTTP or HTTPS traffic is blocked by a gateway or firewall

In some cases, you can use RUISDK.TestConnection to help diagnose the issue.

networkServerError(-401)

Error while communicating with the Server. Communication with the server was successful but the server response
indicates a Server error.

Login to the Usage Intelligence dashboard to make sure your account is active and there are no critical warnings. Test
using RUISDK.TestConnection function.
88 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

Chapter 11 Common Function Return Values
networkResponseInvalid(-402)

The response from the Server was returned with a message format error.

testConnectionInvalidProductID(-420)

The RUISDK.TestConnection function had an invalid ProductID supplied. Check the Product ID provided to you for
accuracy.

testConnectionMismatch(-421)

The RUISDK.TestConnection function had a mismatch between URL and Product ID. Check the Product ID and URL
provided to you for accuracy.
Usage Intelligence 5.6.0 .NET SDK Developer Guide FUI-0560-NETUG 89

Chapter 11 Common Function Return Values
90 FUI-0560-NETUG Usage Intelligence 5.6.0 .NET SDK Developer Guide

	Title Page
	Legal Information
	Contents

	Usage Intelligence 5.6.0 .NET SDK Developer Guide
	Product Support Resources
	Contact Us

	Getting Started with the Usage Intelligence .NET SDK
	System Requirements
	Registering Your Product
	API Overview
	Importing the SDK Files
	Basic Integration Steps
	Next Steps
	Advanced Features

	SDK Configuration
	SDK Object Initialization
	Getting SDK Version Information
	Getting the Client ID
	Initializing the Configuration
	Single vs. Multiple Session Modes
	Opt-Out Mechanism
	Providing Product Data
	Product Details
	Setting Product Data
	Setting Product Edition
	Setting Product Language
	Setting Product Version
	Setting Product Build Number

	License Management

	Changing ReachOut on Autosync Setting
	Proxy Support

	Basic SDK Controls
	Starting the SDK
	Stopping the SDK
	Starting a Session
	Stopping a Session
	Caching and Synchronizing
	Forced Synchronization

	Feature / Event Tracking
	Tracking an Event
	Logging a Normal Event with a Numeric Field
	Logging a Normal Event with a String Field
	Logging a Custom Event

	ReachOut Direct-to-Desktop Messaging Service
	Automated Message Retrieval
	Manual Message Retrieval
	Checking for Manual ReachOut Messages of Any Type
	Checking for Manual ReachOut Messages of a Specified Type

	Exception Tracking
	License Management
	Client vs. Server Managed Licensing
	Checking the License Data of the Supplied License Key
	Setting the Current License to the Supplied License Key

	Custom Properties
	Setting Custom Property Data

	SDK Status Checks
	Getting the State of the Usage Intelligence Instance
	Testing the Connection Between the SDK and the Server

	Common Function Return Values

