
Usage Intelligence
Reporting API v2.1.0 Guide



Legal Information

Copyright Notice
Copyright © 2020 Flexera Software

This publication contains proprietary and confidential information and creative works owned by Flexera Software and its licensors, if any. Any use, 
copying, publication, distribution, display, modification, or transmission of such publication in whole or in part in any form or by any means without the 
prior express written permission of Flexera Software is strictly prohibited. Except where expressly provided by Flexera Software in writing, possession of 
this publication shall not be construed to confer any license or rights under any Flexera Software intellectual property rights, whether by estoppel, 
implication, or otherwise.

All copies of the technology and related information, if allowed by Flexera Software, must display this notice of copyright and ownership in full.

Intellectual Property
For a list of trademarks and patents that are owned by Flexera Software, see https://www.revenera.com/legal/intellectual-property.html. All other brand 
and product names mentioned in Flexera Software products, product documentation, and marketing materials are the trademarks and registered 
trademarks of their respective owners.

Restricted Rights Legend
The Software is commercial computer software. If the user or licensee of the Software is an agency, department, or other entity of the United States 
Government, the use, duplication, reproduction, release, modification, disclosure, or transfer of the Software, or any related documentation of any kind, 
including technical data and manuals, is restricted by a license agreement or by the terms of this Agreement in accordance with Federal Acquisition 
Regulation 12.212 for civilian purposes and Defense Federal Acquisition Regulation Supplement 227.7202 for military purposes. The Software was 
developed fully at private expense. All other use is prohibited.

Book Name: Usage Intelligence Reporting API v2.1.0 Guide

Part Number: FUI-0210-APIUG01

Product Release Date: 10 November 2020

https://www.revenera.com/legal/intellectual-property.html


Contents
1 Usage Intelligence Reporting API v2.1.0 Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
Product Support Resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Contact Us . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Quick Start Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
Authentication Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

HTTPS Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Raw vs Formatted Results  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Example Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 POST vs GET Requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
When to Use GET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

When to Use POST  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Example Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Raw vs. Formatted Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21
Requesting Formatted Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Example Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
Authenticating and Obtaining a Session ID  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Logging Out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Metadata Queries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
Getting a List of Filter / Segmentation Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Getting a List of Possible Property Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Getting Oldest Permitted Date. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 3



Contents
7 Event Tracking Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37
Listing Event Categories and Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8 Generic Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
Generic Date-Range Reports  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Request/Response Parameters Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Global Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

String-Based Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Numeric Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Date Range Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Boolean Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Special Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Special Filter: licenseStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Special Filter: os. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Special Filter: geography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Special Filter: gpu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Special Filters: optOut and backOff  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Special Filter: lifetimeEventUsage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Special Filter: reachOutDeliveries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

<NULL> Values in Global Filters (Date-Range Reports)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Segmentation and Levels (Date-Range Reports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Level Segments Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
String-Based Segmentation Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Numeric Segmentation Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Boolean Segmentation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Special Segmentation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Special Segmentation Format: licenseStatus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Special Segmentation Format: os. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Special Segmentation Format: geography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Special Segmentation Format: gpu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Special Segmentation Format: optOut and backOff  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

<NULL> Values in Segmentation and Levels (Date-Range Reports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Results Format for Reports Using Date Splitting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Full Example Request/Response of Daily Timeline Report with Segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Results Format for Reports Using Date Splitting with No Segmentation Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Results Format for Reports Without Date Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Full Example Request/Response of Report with 2-Level Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Results Format for Reports without Date Splitting and with No Segmentation Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Generic Current Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Request/Response Parameters Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Global Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

String-Based Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Numeric Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Boolean Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Date Range Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Special Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Contents
Special Filter: licenseStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Special Filter: os. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Special Filter: geography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Special Filter: gpu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Special Filters: optOut and backOff  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Special Filter: lifetimeEventUsage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Special Filter: reachOutDeliveries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

<NULL> Values in Global Filters (Current Reports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Segmentation and Levels (Current Reports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Level Segments Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
String-Based Segmentation Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Numeric Segmentation Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Boolean Segmentation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Special Segmentation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Special Segmentation Format: licenseStatus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Special Segmentation Format: os. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Special Segmentation Format: geography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Special Segmentation Format: gpu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Special Segmentation Format: optOut and backOff  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

<NULL> Values in Segmentation and Levels (Current Reports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Results Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Full Example Request/Response of Daily Timeline Report with Segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Results Format for Reports with No Segmentation Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9 User Engagement Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97
Request/Response Parameters Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Global Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
String-Based Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Numeric Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Date Range Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Boolean Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Special Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Special Filter: licenseStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Special Filter: os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Special Filter: geography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Special Filter: gpu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Special Filters: optOut and backOff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Special Filter: lifetimeEventUsage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Special Filter: reachOutDeliveries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

<NULL> Values in Global Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Results Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

10 Event Tracking Reports  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125
Lifetime Event Tracking Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Data Table Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 5



Contents
Request/Response Parameters Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Global Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

String-Based Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Numeric Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Date Range Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Boolean Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Special Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
<NULL> Values for Global Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
String-Based Segmentation Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Numeric Segmentation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Boolean Segmentation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Special Segmentation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
<NULL> Values for Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Sorting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Results Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Example Response with No Event Categorization and No Segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Example Response with Event Categorization and Segmentation by prodVersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Histogram Report  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Request/Response Parameters Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Events Property  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
lowerBounds and binUpperBounds Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Results Histograms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Basic Event Tracking Reports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Data Table Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Request/Response Parameters Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Results Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Timeline Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Request/Response Parameters Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Results Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Advanced Event Tracking Reports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Event Usage Frequency Report  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Request/Response Parameters Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Global Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

String-Based Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Numeric Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Date Range Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Boolean Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Special Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
<NULL> Values in Global Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Data Segmentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
String-Based Segmentation Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Numeric Segmentation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Boolean Segmentation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Special Segmentation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Contents
<NULL> Values for Data Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Events Property  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Results Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

11 Churn-Related Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187
Churn and Engagement Report  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Request/Response Parameters Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Global Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

String-Based Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Numeric Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Date Range Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Boolean Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Special Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Special Filter: licenseStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Special Filter: os. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Special Filter: geography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Special Filter: gpu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Special Filters: optOut and backOff  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Special Filter: lifetimeEventUsage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Special Filter: reachOutDeliveries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

<NULL> Values in Global Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Segmentation Based on Installation Period  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
String-Based Segmentation Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Numeric Segmentation Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Boolean Segmentation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Special Segmentation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Special Segmentation Format: licenseStatus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Special Segmentation Format: os. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Special Segmentation Format: geography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Special Segmentation Format: gpu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Special Segmentation Format: optOut and backOff  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

<NULL> Values for Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Results Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Runtime Activity Reports for Lost Installations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Request/Response Parameters Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Global Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

String-Based Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Numeric Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Date Range Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Boolean Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Special Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Special Filter: licenseStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Special Filter: os. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Special Filter: geography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Special Filter: gpu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 7



Contents
Special Filters: optOut and backOff  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Special Filter: lifetimeEventUsage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Special Filter: reachOutDeliveries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

<NULL> Values in Global Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Results Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Churned User Activity Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Data Table Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Request/Response Parameters Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Global Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

String-Based Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Numeric Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Date Range Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Boolean Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Special Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
<NULL> Values in Global Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
String-Based Segmentation Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Numeric Segmentation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Boolean Segmentation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Special Segmentation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
<NULL> Values for Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Sorting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Results Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Histogram Report  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Request/Response Parameters Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Events Property  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
lowerBounds and binUpperBounds Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Results Histograms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

12 License Key Registry Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  253
Retrieving and Searching License Keys from the Key Registry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Updating and Inserting New Keys in the Key Registry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

13 Custom Event Tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  263
Latest Data Preview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Request/Response Parameters Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Results Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Downloadable File Listing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Request/Response Parameters Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Example Request/Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Download Zipped CSV File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Example Request/Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

14 Exception Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  271
8 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Contents
Latest Data Preview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Request/Response Parameters Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Results Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Downloadable File Listing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Request/Response Parameters Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Example Request/Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Download Zipped CSV File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Example Request/Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

15 Client Profile Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  279
Request/Response Parameters Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

retDailyData Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

properties Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Current Data Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Daily Data Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Global Filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
String-Based Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Numeric Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Date Range Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Boolean Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Special Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Special Filter: licenseStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Special Filter: os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Special Filter: geography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Special Filter: gpu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Special Filters: optOut and backOff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Special Filter: lifetimeEventUsage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Special Filter: reachOutDeliveries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

<NULL> Values in Global Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Results Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

Example Request/Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

16 Raw Data Export  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  295
Downloadable File Listing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Request/Response Parameters Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Example Request/Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Download Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Example Request/Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 9



Contents
10 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



1

Usage Intelligence

Reporting API v2.1.0 Guide
The Usage Intelligence Reporting API is targeted for advanced users who would like to build their own dashboards or 
integrate Usage Intelligence reporting (charts or raw data) within third party applications. The API can also be used to 
export data and statistics out of the Usage Intelligence servers for archiving or custom processing by other solutions.

The Usage Intelligence Reporting API v2.1.0 Guide is organized into the following sections.

Table 1-1 • Usage Intelligence Reporting API v2.1.0 Guide

Section Description

Quick Start Guide Helps you learn how to use the API by trying out simple queries, and then 
start working on more complex queries.

POST vs GET Requests Explains the two request method options - HTTP POST or HTTP GET requests. 

Raw vs. Formatted Responses Describes the two major methods to retrieve data - either in raw JSON format, 
or else in readily-formatted charts or tables wrapped in an HTML page.

Authentication Explains how to authenticate, obtain a session ID, and log out.

Metadata Queries Lists what filters are available and what filter values are possible.

Event Tracking Management Explains how to create request to get a list of event names and categories 
that have been reported by your application to Usage Intelligence, know 
which ones have been enabled for collection, and also set which ones should 
be collected. 

Generic Reports Describes the date-range and current date reports, which show new, active, 
and lost users, and which can then be split by a number of segmentation 
options such as by country, by product version, etc. 
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 11



Chapter 1 Usage Intelligence Reporting API v2.1.0 Guide
Product Support Resources
Product Support Resources
The following resources are available to assist you with using this product:

• Revenera Product Documentation

• Revenera Community

• Revenera Learning Center

• Revenera Support

Revenera Product Documentation

You can find documentation for all Revenera products on the Revenera Product Documentation site:

https://docs.revenera.com

User Engagement Histograms Describes the User Engagement Histogram Report, which shows the number 
of days clients were active within the specified date range, number of times 
users launched your application, and the total amount of time, in hours, users 
spent interacting with your application.

Event Tracking Reports These reports are meant to provide insight of what features in your product 
are most popular and how they are used. 

Churn-Related Reports This collection of reports is meant to provide insight on the lifetime of lost 
users. These reports are meant to report what happened during the whole 
lifetime of these installations rather than what happened during a defined 
date range.

License Key Registry Management This section explains how to retrieve and search license keys from the key 
registry, and how to update and insert new keys in the key registry.

Custom Event Tracking In Custom Event Tracking reports, data can either be previewed by retrieving 
the latest data in JSON format or else, zipped CSV files can be downloaded for 
offline processing.

Exception Tracking In Exception Tracking reports, data can either be previewed by retrieving the 
latest data in JSON format or else, zipped CSV files can be downloaded for 
offline processing.

Client Profile Report This report retrieves a subset or all of the data about a client or a set of 
clients. 

Raw Data Export Explains how to download raw data export files. The list of files can be 
retrieved, and then a temporary URL may be requested for downloading.

Table 1-1 • Usage Intelligence Reporting API v2.1.0 Guide (cont.)

Section Description
12 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide

https://docs.revenera.com
https://docs.revenera.com


Chapter 1 Usage Intelligence Reporting API v2.1.0 Guide
Contact Us
Revenera Community

On the Revenera Community site, you can quickly find answers to your questions by searching content from other 
customers, product experts, and thought leaders. You can also post questions on discussion forums for experts to answer. 
For each of Revenera’s product solutions, you can access forums, blog posts, and knowledge base articles. 

https://community.revenera.com

Revenera Learning Center

The Revenera Learning Center offers free, self-guided, online videos to help you quickly get the most out of your Revenera 
products. You can find a complete list of these training videos in the Learning Center.

https://learning.revenera.com

Revenera Support

For customers who have purchased a maintenance contract for their product(s), you can submit a support case or check 
the status of an existing case by making selections on the Get Support menu of the Revenera Community. 

https://community.revenera.com

Contact Us
Revenera is headquartered in Itasca, Illinois, and has offices worldwide. To contact us or to learn more about our products, 
visit our website at:

http://www.revenera.com

You can also follow us on social media:

• Twitter

• Facebook

• LinkedIn

• YouTube

• Instagram
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 13

https://community.revenera.com
https://community.revenera.com
https://learning.revenera.com
https://community.revenera.com
http://www.revenera.com
https://twitter.com/getrevenera
https://www.facebook.com/flexera/
https://www.linkedin.com/company/revenera/
https://www.youtube.com/c/GetRevenera
https://www.instagram.com/weareflexera/


Chapter 1 Usage Intelligence Reporting API v2.1.0 Guide
Contact Us
14 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



2

Quick Start Guide
The Usage Intelligence API has been built from the ground up to be as flexible as possible. Every report available on the 
Usage Intelligence Web UI is also available through the API. It is best to start learning how to use the API by trying out 
simple queries, and then start working on more complex queries at a later stage.

Before building your first queries you should understand the following:

• Authentication Method

• HTTPS Method

• Raw vs Formatted Results

• Example Request

Authentication Method
Before generating a report you must first authenticate with the API server by using one of the 2 methods below:

• Using user and session ID that are sent manually with every request

• Using cookies

If the API is to be accessed via a browser, then the cookie method is normally the most convenient way how to manage the 
authentication session. If you are writing a script or an application that needs to authenticate automatically and retrieve 
data without involving web browsers, then it is normally easier to avoid having to use cookies and managing the user name 
and session ID within your script. For more details about authentication, see Authentication.

HTTPS Method
Report queries may be sent either using POST or GET requests. Whenever possible, POST is the preferred option. When 
using POST requests, the request data is to be sent as the POST data. GET requests are to be used in cases where using 
POST is not possible such as when requesting data as an iframe source. In such cases, the request data is to be sent URL 
encoded as part of the URL inside a parameter named “query”. For more details about these 2 methods, see POST vs GET 
Requests.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 15



Chapter 2 Quick Start Guide
Raw vs Formatted Results
Raw vs Formatted Results
The results that the server returns can either be in a raw JSON format or else can be pre-formatted by the server as an 
HTML page that includes a chart or table which can be embedded in your page. The raw JSON format is meant to be read 
by scripts or applications and used for further processing. At the moment, the response can either be sent in raw JSON, or 
else as a Highcharts chart. Please note that if you choose to use Highcharts in your application, you may require a 
Highcharts license.

Example Request
In this very basic example, it is assumed that we are accessing the API from a web browser and we would like to get a 
timeline of the last 60 days showing the number of new, active, and lost users. Normally, the target URL should be used to 
set the target URL of an iframe, however, for testing, you may simply paste the URL in the browser address bar.

In this example, we are using cookie-based authentication. Since we are getting the data using GET requests, the API server 
will automatically redirect us to the login page if we are not already logged in. Therefore, we do not need to worry about 
authentication at this stage.

• Building the JSON Request Object

• Encoding the Request and Getting the Data

Building the JSON Request Object

The following is the JSON object which we will be sending as the request. For this example, we will be requesting data from 
the demo product account.

{
"productId": 2376158762,
"startDate": "NOW-60",
"stopDate": "NOW",
"dateSplit": "day",
"clientStatus": [

"new",
"active",
"lost"

],
"daysUntilDeclaredLost": 30,
"dateReportedLost": "dateDeclaredLost"

}

Encoding the Request and Getting the Data

The JSON object should be sent as part of the request URL in a parameter named “query”. In this case, the URL should be 
as follows:

https://api.revulytics.com/reporting/generic/dateRange?query={"productId":2376158762,"startDate":"NOW-
60","stopDate":"NOW","dateSplit":"day","clientStatus":["new","active","lost"],"daysUntilDeclaredLost":3
0,"dateReportedLost":"dateDeclaredLost"}&resultFormat=highcharts&hcType=line

The “query” value needs to be URL encoded. All modern browsers automatically apply URL encoded to unencoded 
parameter values. However, it is always recommended to apply encoding before sending the URL. In such case, the 
encoded URL would be as follows:
16 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 2 Quick Start Guide
Example Request
https://api.revulytics.com/reporting/generic/
dateRange?query=%7B%22productId%22%3A2376158762%2C%22startDate%22%3A%22NOW-
60%22%2C%22stopDate%22%3A%22NOW%22%2C%22dateSplit%22%3A%22day%22%2C%22clientStatus%22%3A%5B%22new%22%2C
%22active%22%2C%22lost%22%5D%2C%22daysUntilDeclaredLost%22%3A30%2C%22dateReportedLost%22%3A%22dateDecla
redLost%22%7D&resultFormat=highcharts&hcType=line
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 17



Chapter 2 Quick Start Guide
Example Request
18 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



3

POST vs GET Requests
The Usage Intelligence API offers 2 request method options - HTTP POST or HTTP GET requests. These options are being 
offered for flexibility and to allow insertion of reports inside different applications which may range from desktop 
applications, scripts, browser-side Javascript, and even static HTML pages.

• When to Use GET

• When to Use POST

• Example Request

When to Use GET
HTTP GET is the kind of request that is normally used to request a web page. This kind of request is not meant to send large 
amounts of data. The advantage of GET requests is that all data that is to be sent, is encoded within the URL itself. 
Therefore, the URL can be copied to other users, used as an iframe src, or saved as a browser bookmark.

When requesting formatted reports which are meant for immediate display rather than for further processing, GET is 
normally the best option. When using GET requests in order to include a report as part of a web page, one does not need to 
worry about how to do the request itself. The easiest way is to create an iframe and simply place the URL in the iframe src 
attribute.

All the examples within this documentation use POST requests. However, all requests other than POST /auth/login can be 
accessed via a GET request. To request a report via GET, the same URL should be called, and the JSON request object 
should be formatted in exactly the same way. However, instead of sending the JSON object as POST data, it should be sent 
URL encoded inside a parameter named query.

When to Use POST
HTTP POST requests are designed to send data over the web. This is the type of request that is used after filling an HTML 
form or when uploading a file. The advantage of this type of request is that it can send large amounts of data while keeping 
the URL short and simple. However, if the URL is copied, all data is lost.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 19



Chapter 3 POST vs GET Requests
Example Request
When requesting raw (JSON) reports, which are meant for further local processing, POST requests are the preferred 
request method. This is because it is the method that is designed for long data request, and is cleaner and easier to 
understand. Therefore, if you are building a desktop application or writing a script in which your code (and not a browser) 
will be handling the request mechanism, it is recommended to use POST whenever possible.

Example Request
The following is an example request of a date range report with no global filters and 1 segmentation level showing only the 
number of active users using each different product language. In this example, we are assuming that cookie-based 
authentication is being used, and therefore, the user and sessionId properties are not being used. Also, we are requesting a 
HighCharts column chart by adding the following parameters to the URL: &resultFormat=highcharts&hcType=column

The following is the JSON object which is to be sent, regardless of whether this is a GET or POST request:

{
"productId": 2376158762,
"startDate": "NOW-60",
"dateSplit": null,
"clientStatus": [

"active"
],
"levels": {

"level1": {
"property": "prodLanguage",
"segments": [

{
"type": "regex",
"value": ".*"
"split": true

}
]

}
}

}

The following is how the request URL should look with URL encoding:

https://api.revulytics.com/reporting/generic/
current?query=%7B%22productId%22%3A2376158762%2C%22startDate%22%3A%22NOW-
60%22%2C%22dateSplit%22%3Anull%2C%22clientStatus%22%3A%5B%22active%22%5D%2C%22levels%22%3A%7B%22level1%
22%3A%7B%22property%22%3A%22prodLanguage%22%2C%22segments%22%3A%5B%7B%22type%22%3A%22regex%22%2C%22valu
e%22%3A%22.*%22%2C%22split%22%3Atrue%7D%5D%7D%7D%7D&resultFormat=highcharts&hcType=column

To better understand the above example, the following is the same URL without using URL encoding:

https://api.revulytics.com/reporting/generic/current?query={"productId":2376158762,"startDate":"NOW-
60","dateSplit":null,"clientStatus":["active"],"levels":{"level1":{"property":"prodLanguage","segments"
:[{"type":"regex","value":".*","split":true}]}}}&resultFormat=highcharts&hcType=column
20 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



4

Raw vs. Formatted Responses
The Usage Intelligence API offers 2 major methods how to retrieve the data - either in raw JSON format which is meant to 
be processed by your application or scripts, or else in readily-formatted charts or tables wrapped in an HTML page which is 
meant to be used as an iframe or HTML frame source.

At the moment, formatted charts are generated using Highcharts Javascript components. Tables are generated using a 
custom HTML format.

• Requesting Formatted Reports

• Example Request

Requesting Formatted Reports
By default, all reports are presented in raw JSON. If you would like to get HTML formatted data, you need to add a GET 
parameter named resultFormat, with its value being highcharts or table. If you are building a chart, then the value 
should be highcharts, while table should be used for tabular data. 

If you are requesting raw data, then the resultFormat property should either be left out, or else, its value should be raw. If 
you are requesting a highcharts response, then you also need to add another parameter: hcType. This is used to specify 
the type of chart you would like to receive. The possible values are pie, bar, column, or line.

Note • Line charts should be used when dateSplit is not null, while the other chart types are to be used when you are not 
splitting by date (dateSplit is null).

Example Request
In this example, we are requesting a column chart comparing the number of active users using the different product 
editions in the last 60 days. For simplicity, we will be sending a GET request, and use cookie authentication. The following is 
the JSON query object that we should send:

{

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 21



Chapter 4 Raw vs. Formatted Responses
Example Request
"productId": 2376158762,
"startDate": "NOW-60",
"stopDate": "NOW",
"dateSplit": null,
"clientStatus": [

"active"
],
"levels": {

"level1": {
"property": "prodEdition",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

}
}

}

The following is how the request URL should look with URL encoding:

https://api.revulytics.com/reporting/generic/
dateRange?query=%7B%22productId%22%3A2376158762%2C%22startDate%22%3A%22NOW-
60%22%2C%22stopDate%22%3A%22NOW%22%2C%22dateSplit%22%3Anull%2C%22clientStatus%22%3A%5B%22active%22%5D%2
C%22levels%22%3A%7B%22level1%22%3A%7B%22property%22%3A%22prodEdition%22%2C%22segments%22%3A%5B%7B%22typ
e%22%3A%22regex%22%2C%22value%22%3A%22.*%22%2C%22split%22%3Atrue%7D%5D%7D%7D%7D&resultFormat=highcharts
&hcType=column

The result should look similar to the following image:

Figure 4-1: Highcharts Example
22 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



5

Authentication
Information about authentication is presented in the following sections:

• Authenticating and Obtaining a Session ID

• Logging Out

Authenticating and Obtaining a Session ID
Before being able to request any data, one needs to authenticate with the API and get a session ID. The session ID can be 
retrieved either as part of the JSON response, or else as a cookie.

If authentication is not done, further requests will be rejected. If a POST request for a report is done and no authentication 
has been made, a 401 error code will be returned. If the same request is done using GET, instead of an error, a 302 redirect 
is returned to the authentication page.

You use the following POST request to authenticate a user by verifying username and password.

POST /auth/login

This authentication request has the following properties.

Table 5-1 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account

• password (string)—The corresponding password of your Usage Intelligence user 
account

• useCookies (boolean)—Optional parameter to specify whether the response should 
set a cookie (if true), or include the session ID as part of the JSON response (if false). 
Default is false.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 23



Chapter 5 Authentication
Logging Out
Example Request
POST /auth/login HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",
"password": "mypassword1",
"useCookies": false

}

Example Response
HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "OK",
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA"

}

Logging Out
In order to log out, it is required to invalidate the user session that was created when logging in. If cookies are being used, 
the cookie will also be invalidated. Two options for logging out are being offered - either invalidate a single session or else, 
invalidate all sessions that are active on your user ID.

Invalidating a Single Session

You use the following POST request to invalidate a single session.

Request Headers • Content-Type—Can be set to application/json or text/javascript

• Accept—Should be set to text/javascript

Response Headers • Content-Type—Will contain text/javascript

Status Codes • 200 OK—OK (no error)

• 400 Bad Request—Malformed request

• 403 Forbidden—Wrong credentials supplied

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• sessionId (string)—Present only if status is OK and useCookies is false. Contains 
session ID to be used in all further requests.

Table 5-1 • Request Properties

Property Description
24 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4


Chapter 5 Authentication
Logging Out
POST /auth/logout

If no JSON data is sent, the system expects to find a valid authentication cookie. If such a cookie is found, the cookie is 
deleted, and the session is invalidated from the server. If JSON data is sent, then the session and user ID are read from the 
JSON object as described below.

If this request is done via POST, then a JSON response as described below will be returned. If GET is used, the response is 
not in JSON but in user-friendly HTML. If you are using GET and still would like to receive a JSON response, add the 
parameter resultFormat=raw so the URL should be https://api.revulytics.com/auth/logout?resultFormat=raw.

This request to invalidate a single session the following properties.

Table 5-2 • Invalidating a Single Session Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account

• sessionId (string)—The sessionId obtained via POST /auth/login.

Request Headers • Content-Type—Can be set to application/json or text/javascript

• Accept—Should be set to text/javascript

Response Headers • Content-Type—Will contain text/javascript

Status Codes • 200 OK—OK (no error)

• 400 Bad Request—Malformed request

• 403 Forbidden—Wrong credentials supplied

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message 
(reason).
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 25

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4


Chapter 5 Authentication
Logging Out
26 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



6

Metadata Queries
Usage Intelligence reports support filtering and segmentation by a number of different properties. In order to be able to 
build filters and custom segments, you first need to know what filters are available and what filter values are possible.

Information about metadata queries is presented in the following sections:

• Getting a List of Filter / Segmentation Properties

• Getting a List of Possible Property Values

• Getting Oldest Permitted Date

Getting a List of Filter / Segmentation Properties
This request is to be used to get a list of properties by which you can filter or segment your reports.

Request/Response Parameters Summary

You use the following POST request to get a list of properties by which you can filter or segment your reports.

POST /meta/productProperties

The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Table 6-1 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. Required 
only for non-cookie authentication.

• sessionId (string)—The sessionId obtained via POST /auth/login. Required only for 
non-cookie authentication.

• productId (integer)—The product ID on which this request is being done/
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 27



Chapter 6 Metadata Queries
Getting a List of Filter / Segmentation Properties
Example Response

HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "OK",
"results": [

{
"category": "Product Properties",
"properties": [

{
"name": "prodVersion",
"friendlyName": "Product Version",
"filterType": "standard",
"dataType": "string"

},
{

"name": "prodEdition",
"friendlyName": "Product Edition",
"filterType": "standard",
"dataType": "string"

},
{

"name": "prodLanguage",
"friendlyName": "Product Language",
"filterType": "standard",
"dataType": "string"

},
{

"name": "prodBuild",
"friendlyName": "Product Build",
"filterType": "standard",
"dataType": "string"

Request Headers • Content-Type—Can be set to application/json or text/javascript

• Accept—Should be set to text/javascript

Response Headers • Content-Type—Will contain text/javascript

Status Codes • 200 OK—OK (no error)

• 400 Bad Request—Malformed request

• 403 Forbidden—Wrong username, sessionId, session expired, or not authorized

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• results (array)—Present only if status is OK. Contains the list of available properties 
as described below.

Table 6-1 • Request Properties

Property Description
28 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4


Chapter 6 Metadata Queries
Getting a List of Filter / Segmentation Properties
}
]

},
{

"category": "Licensing Properties",
"properties": [

{
"name": "licenseType",
"friendlyName": "License Type",
"filterType": "standard",
"dataType": "string"

},
{

"name": "licenseStatus",
"friendlyName": "License Status",
"filterType": "standard",
"dataType": "special",
"subProperties": [

{
"name": "activated",
"friendlyName": "Activated",
"dataType": "boolean"

},
{

"name": "blocked",
"friendlyName": "Blocked",
"dataType": "boolean"

},
{

"name": "expired",
"friendlyName": "Expired",
"dataType": "boolean"

},
{

"name": "allowed",
"friendlyName": "Allowed",
"dataType": "boolean"

}
]

}
]

},
{

"category": "Platform Properties",
"properties": [

{
"name": "osLanguage",
"friendlyName": "OS Language",
"filterType": "standard",
"dataType": "string"

},
{

"name": "os",
"friendlyName": "OS",
"filterType": "standard",
"dataType": "special",
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 29



Chapter 6 Metadata Queries
Getting a List of Filter / Segmentation Properties
"granularityLevels": [
{

"name": "platform",
"friendlyName": "Platform",
"dataType": "string"

},
{

"name": "version",
"friendlyName": "Version",
"dataType": "string"

},
{

"name": "edition",
"friendlyName": "Edition",
"dataType": "string"

}
]

},
{

"name": "geography",
"friendlyName": "Geography",
"filterType": "standard",
"dataType": "special",
"granularityLevels": [

{
"name": "continent",
"friendlyName": "Continent",
"dataType": "string"

},
{

"name": "country",
"friendlyName": "Country",
"dataType": "string"

},
{

"name": "usState",
"friendlyName": "US State",
"dataType": "string"

}
]

},
{

"name": "formFactor",
"friendlyName": "Form Factor",
"filterType": "currentData",
"dataType": "string"

},
{

"name": "cpuType",
"friendlyName": "CPU Type",
"filterType": "currentData",
"dataType": "string"

},
{

"name": "cpuCores",
"friendlyName": "CPU Cores",
30 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 6 Metadata Queries
Getting a List of Possible Property Values
"filterType": "currentData",
"dataType": "numeric",
"units": ""

},
{

"name": "displayCount",
"friendlyName": "Monitor Count",
"filterType": "currentData",
"dataType": "numeric",
"units": ""

},
{

"name": "ram",
"friendlyName": "RAM",
"filterType": "currentData",
"dataType": "numeric",
"units": "MB"

},
{

"name": "resolutionWidth",
"friendlyName": "Resolution - Horizontal",
"filterType": "currentData",
"dataType": "numeric",
"units": "px"

},
{

"name": "resolutionHeight",
"friendlyName": "Resolution - Vertical",
"filterType": "currentData",
"dataType": "numeric",
"units": "px"

},
{

"name": "osWordLength",
"friendlyName": "OS Word Length",
"filterType": "currentData",
"dataType": "numeric",
"units": "bit"

}
]

}
]

}

Getting a List of Possible Property Values
This request is used in order to get a list of possible values for the selected property. This data is then used to build filters or 
segments as required.

Request/Response Parameters Summary
POST /meta/propertyValues
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 31



Chapter 6 Metadata Queries
Getting a List of Possible Property Values
The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Table 6-2 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. Required 
only for non-cookie authentication.

• sessionId (string)—The sessionId obtained via POST /auth/login. Required only 
for non-cookie authentication.

• productId (integer)—The product ID on which this request is being done.

• property (string)—The name of the property to retrieve listing for

• filter (object)—An optional value used to filter very long meta lists. This feature is 
not available if the property is geography. Details about filtering can be found in the 
Filtering Long Lists section.

• granularity (string)—Required only when property is os, geography, or gpu. The 
values can be as follows:

If geography:

• continent

• country

• usState

If os:

• platform

• version

• edition

If gpu:

• vendor

• model

• startAfter (string)—Optional value. To be used for paging on long lists. When 
paging, this should contain the value of lastValue from the previous response.

• getFullList (boolean)—Optional value. Can be used when property is os, 
osLanguage, or geography. Instructs the server to return a list of all known values by 
the system instead of showing only the ones that were collected in this particular 
product. Default is false.

Request Headers • Content-Type—Can be set to application/json or text/javascript

• Accept—Should be set to text/javascript

Response Headers • Content-Type—Will contain text/javascript
32 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5


Chapter 6 Metadata Queries
Getting a List of Possible Property Values
Example Request

POST /meta/propertyValues HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 12345678901,
"property": "os",
"granularity": "version"

}

Example Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "status": "OK",
 "results": [

 {
 "value": "Microsoft Windows XP",

Status Codes • 200 OK—OK (no error)

• 400 Bad Request—Malformed request

• 403 Forbidden—Wrong username, sessionId, session expired, or not authorized

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• results (array)—Present only if status is OK. Contains the list of property values. 
Each item is presented in a JSON object as follows:

• value (string)—Present in all responses. This contains the value that is to be 
used for filtering and segmentation.

• shortName (string)—Present if property is os. Contains an abbreviated OS 
name that can fit better in some user interfaces.

• fullName (string)—Present if property is geography or osLanguage. Contains 
the full continent, country, US state, or language name while the value 
property contains an abbreviated code.

• truncated (boolean)—Present only if the list is too long. Use filtering in order to 
retrieve shorter lists or use paging by using the startAfter parameter. See Filtering 
Long Lists. 

• lastValue (boolean)—Contains the last value of the list. To be used for paging. This 
value is to be sent as the startAfter parameter in the next request.

Table 6-2 • Request Properties

Property Description
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 33

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4


Chapter 6 Metadata Queries
Getting Oldest Permitted Date
 "shortName": "MS Win XP"
 },
 {

 "value": "Microsoft Windows Server 2003",
 "shortName": "MS Win Srv 2003"

 },
 {

 "value": "Microsoft Windows Vista",
 "shortName": "MS Win Vista"

 },
 {

 "value": "Microsoft Windows Server 2008",
 "shortName": "MS Win Srv 2008"

 },
 {

 "value": "Microsoft Windows 7",
 "shortName": "MS Win 7"

 }
]

}

Filtering Long Lists

When the list of property values is too long, the list will get truncated. This is especially common on requests related with 
custom properties. The filter property is a JSON object which should contain the following values:

• type (string)—Can be either regex or string. Normally, regex should be used because string is to be used only to 
verify existence of a certain value.

• value (string)—A string normally containing a regular expression that defines the filter to be applied.

Getting Oldest Permitted Date
This request returns the oldest allowed start date based on the product plan.

POST /meta/oldestReportedDate

Example Request
POST /meta/oldestReportedDate HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 12345678901

}

Example Response
HTTP/1.1 200 OK
Content-Type: application/json
34 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 6 Metadata Queries
Getting Oldest Permitted Date
{
"status": "OK",
"oldestDate": "2018-03-20"

}

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 35



Chapter 6 Metadata Queries
Getting Oldest Permitted Date
36 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



7

Event Tracking Management
These requests are used to get a list of event names and categories that have been reported by your application to Usage 
Intelligence, know which ones have been enabled for collection, and also set which ones should be collected. At this stage, 
only listing of event names is available. To select which ones should be collected, please visit the old analytics UI.

• Listing Event Categories and Names

Listing Event Categories and Names
These requests are used to get a list of event names and categories that have been reported by your application to Usage 
Intelligence, know which ones have been enabled for collection, and also set which ones should be collected.

POST /eventTracking/listEventNames

The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Table 7-1 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. Required 
only for non-cookie authentication.

• sessionId (string)—The sessionId obtained via POST /auth/login. Required only for 
non-cookie authentication.

• productId (integer)—The product ID on which this request is being done.

• showEvents (array)—An array of strings that can contain either “all” to list all 
known events, or else can contain “basic”, “advanced”, or both basic and 
advanced. This acts as a filter to show only those event names that have been 
enabled in the basic or advanced event tracking allowed list.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 37



Chapter 7 Event Tracking Management
Listing Event Categories and Names
In the example below, we are requesting for a complete list of all known event names. If we request for only events that 
have been enabled for basic event tracking, or similarly if we want only those that have been enabled for advanced 
tracking, the showEvents value should be [“basic”] or [“advanced”] respectively. If you are only requesting a single type, 
and not all or basic and advanced in a single request, the basic and advanced boolean properties would not be included in 
the response.

Example Request
POST /eventTracking/listEventNames HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 12345678901,
"showEvents": ["all"]

}

Example Response
HTTP/1.1 200 OK
Content-Type: application/json

"status": "OK",
"results": [
{

"category": "File Operations",

Response JSON Object status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

reason (string)—Present only if status is not OK. Contains error message (reason).

results (object)—Contains the results as requested represented as a JSON array. 
Present only if status is OK. Each array element represents a category. Each of these 
category elements is formatted as a JSON object and contains the following:

• category (string) or (null)—Contains the name of the category or null if there are 
events which have not been assigned a category.

• categoryEventNames (array)—An array of JSON objects - one element for each 
event name. Each of these JSON objects contains the following:

• eventName (string) – The event name as reported by your application

• basic (boolean) (optional) – Present only if showEvents is set to all or contains 
more than 1 item. Contains true if this event is enabled in basic event tracking 
collection.

• advanced (boolean) (optional) – Present only if showEvents is set to all or 
contains more than 1 item. Contains true if this event is enabled in advanced 
event tracking collection.

Table 7-1 • Request Properties

Property Description
38 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 7 Event Tracking Management
Listing Event Categories and Names
"categoryEventNames": [
{

"eventName": "Open",
"basic": true,
"advanced": true

},
{

"eventName": "Save",
"basic": true,
"advanced": true

}
]

},
{

"category": "Install Wizard",
"categoryEventNames": [

{
"eventName": "Step 1",
"basic": true,
"advanced": false

},
{

"eventName": "Step 2",
"basic": true,
"advanced": false

}
]

}
]

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 39



Chapter 7 Event Tracking Management
Listing Event Categories and Names
40 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



8

Generic Reports
These are the most versatile reports provided by Usage Intelligence. These consist of reports showing new, active, and lost 
users, which can then be split by a number of segmentation options such as by country, by product version, etc. 

These reports can be based either on a date range - where a start and stop date can be specified by the user, or else on the 
current data (latest known data about active users). 

• Date-range reports provide the flexibility of viewing historical data and can also be used to show data on a daily, 
weekly, or monthly data (line charts). Both date-range and current data reports can be used to show bar charts, pie 
charts, or tables segmented with up to 3 levels. 

• Current data reports offer more filtering and segmentation options such as architecture data (cpu type, RAM, 
number of monitors, etc.).

For more information, see:

• Generic Date-Range Reports

• Generic Current Reports

Generic Date-Range Reports
This reporting mechanism is to be used for generating reports regarding user activity within a particular specified date 
range. Depending on the request, this can create timeline charts, pie/bar charts, geographical maps, or hierarchical tables.

• Request/Response Parameters Summary

• Global Filters

• Segmentation and Levels (Date-Range Reports)

• Results Format for Reports Using Date Splitting

• Results Format for Reports Without Date Splitting
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 41



Chapter 8 Generic Reports
Generic Date-Range Reports
Request/Response Parameters Summary
This is used to generate reports within a particular specified date range.

POST /reporting/generic/dateRange
42 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Date-Range Reports
The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Table 8-1 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. Required 
only for non-cookie authentication.

• sessionId (string)—The sessionId obtained via POST /auth/login. Required only 
for non-cookie authentication.

• productId (integer)—The product ID on which this request is being done

• groupBy (string)—Optional parameter to specify the property with which to group 
installations. By default, this value is considered to be clientId. Other possible 
options are machineId, licenseKey or any custom property of type 3.

• dateSplit (string/null)—Whether to present results by day, week, or month or to 
combine all results into a pie/bar chart or table

• startDate (string)—The first date of the date range on which to base the report. 
This is to be formatted as YYYY-MM-DD.

• stopDate (string)—The last date of the date range on which to base the report. This 
is to be formatted as YYYY-MM-DD.

• clientStatus (array)—The client statuses to show in the report. Each report can 
show any combination of new, active, and lost users. This is to be presented as an 
array of up to 3 strings which can be new, active, and lost.

• daysUntilDeclaredLost (integer)—Required only if the clientStatus array 
contains lost. This specifies the number of consecutive days of inactivity that have 
to pass until a client installation is declared lost.

• dateReportedLost (string)—Required only if the clientStatus array contains lost. 
When an installation is lost, it can either be shown as lost on the date it last 
contacted the Usage Intelligence servers (dateLastSeen) or else it can be shown as 
lost when it was declared lost (last date when it contacted the Usage Intelligence 
servers + the number of days specified in daysUntilDeclaredLost) 
(dateDeclaredLost). Therefore, the permitted values are dateLastSeen and 
dateDeclaredLost.

• globalFilters (object)—JSON object containing the filters to be applied to the 
available data. Details about these filters can be found in the Global Filters section.

• levels (object)—Optional JSON object that describes how data is to be split into 
segments in each level. Requests where dateSplit is null can have up to 3 levels 
while when date splitting is being done, 0 or 1 levels can be specified. Details about 
levels and segmentation can be found in the Segmentation and Levels (Date-Range 
Reports) section.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 43



Chapter 8 Generic Reports
Generic Date-Range Reports
Global Filters
Most of the available filter properties are string-based. This means that when applying a filter, the requested field can be 
represented as a string, stringArray or regex. There are also some filters which are numeric. These filters should be 
represented as number or numberRange.

• String-Based Filters

• Numeric Filters

• Date Range Filters

• Boolean Filters

• Special Filters

• <NULL> Values in Global Filters (Date-Range Reports)

String-Based Filters
The following properties are stored as strings:

machineId *
clientId *
prodVersion
prodEdition
prodBuild
prodLanguage
licenseType
formFactor *
osLanguage
osWordLength *
cpuType *
dotNetVersion *
javaVersion *
javaVendor *
javaRuntime *
javaGraphics *
javaVmVersion *

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• levelLabels (object)—Present only on responses where dateSplit is null. When 
present, this contains the property names of each level as requested.

• results (object)—Contains the results as requested represented as a JSON object. 
The structure differs between reports using date splitting (Results Format for 
Reports Using Date Splitting) and those that have date splitting set to null (Results 
Format for Reports Without Date Splitting). The result format is described below.

Table 8-1 • Request Properties

Property Description
44 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Date-Range Reports
javaVmName *
vm *
C01 .. C20 (Custom properties)
licenseKey *

Note • licenseKey requires a special user permission to be used as a filter.

Note • Properties marked with an asterisk (*) are based on the current (latest known) values.

The type field in the above filters needs to be string, stringArray or regex. A value field is always required. The contents 
of this field should be according to the specified type. 

• If string is specified, then the value field must contain a single string that needs to be matched precisely with the 
stored data. 

• If stringArray is specified, then the value field must contain an array of strings where one of which needs to match 
precisely with the stored data. 

• If specifying a regex, the value field should contain a string which is treated as a regular expression and the stored 
data will be matched against it using regular expression rules.

Example Filter Using a String Value

In this example, the product build value needs to be exactly “3014.int-12214”:

{
"prodBuild":

{
"type": "string",
"value": "3014.int-12214"

}
}

Example Filter Using a String Array

In this example, the product build value needs to be either “3014.int-12214”, “3017.enx-57718”, or “4180.vrx-81059”. 
Note that since the type is declared as stringArray, the value field needs to contain an array. Consider all elements in the 
array to have an OR logical expression between them.:

{
"prodBuild":

{
"type": "stringArray",
"value": ["3014.int-12214", "3017.enx-57718", "4180.vrx-81059"]

}
}

Example Filter Using a Regular Expression

In this example, the product build value needs to start with “30” and end with “18” whilst having 10 characters in between:

{
 "prodBuild":

 {
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 45



Chapter 8 Generic Reports
Generic Date-Range Reports
 "type": "regex",
 "value": "^30.{10}18$"

 }
}

Numeric Filters
The following properties are stored as numeric values:

cpuCores *
displayCount *
ram *
resolutionWidth *
resolutionHeight *
lifetimeRuntimeMinutes *
lifetimeSessionCount *
screenPpi *
javaVmRam *

Note • Properties marked with an asterisk (*) are based on the current (latest known) values.

The type field in the above filters needs to be number or numberRange. 

• If number is specified, then a value field must also be present. The value field should contain a number, which may 
contain a decimal point if required. 

• If numberRange is specified, then the value field should NOT be used. Instead, the properties min and max are to be 
used. These refer to the minimum and maximum number to be included in the report. If only one limit needs to be set, 
the other property is to be left out. Therefore, if you want to include installations with up to 2 display devices, you 
would not specify a min value, but instead specify only a max and set it as 2.

Example Filter Using a Number Value

In this example, the number of display devices needs to be exactly 3:

{
"displayCount":

{
"type": "number",
"value": 3

}
}

Example Filter Using a Number Range Value

In this example, the RAM needs to be between 1025MB and 4096MB (both included):

{
"ram":

{
"type": "numberRange",
"min": 1025,
"max": 4096

}

46 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Date-Range Reports
}

Date Range Filters
The following properties are stored as dates:

dateInstalled
dateLastSeen

The type field in the above filters needs to be date or dateRange. 

• If date is specified, then a value field must also be present. The value field should contain a date. 

• If dateRange is specified, then the value field should NOT be used. Instead, the properties min and max are to be used. 
These refer to the minimum and maximum dates to be included in the report. If only one limit needs to be set, the 
other property is to be left out. 

In the following example, users installed after January 1st 2018 are to be shown:

{
 "dateInstalled":

 {
 "type": "dateRange", 
"min": "2018-01-01"

 }
}

Note that all dates must be in ISO 8601 format.

Boolean Filters
The following property is stored as boolean:

touchScreen

The type field in the above filters needs to be boolean. The value must be true or false. 

In the following filter, clients with a touch screen are being requested.

{
"touchScreen":

{
"type": "boolean",
"value": true

}
}

Special Filters
Some filters need to be represented in a special format due to their unique requirements. These special filters are:

• Special Filter: licenseStatus

• Special Filter: os

• Special Filter: geography
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 47



Chapter 8 Generic Reports
Generic Date-Range Reports
• Special Filter: gpu

• Special Filters: optOut and backOff

• Special Filter: lifetimeEventUsage

• Special Filter: reachOutDeliveries

Special Filter: licenseStatus
The licenseStatus filter is made up of 4 sub-values: activated, blocked, expired and allowed. These are presented as 
boolean values. 

Unlike other filters, this filter is presented as an array of JSON objects. Each object can contain a subset (or all) of these 4 
boolean values. 

Consider the following example. In this example, for a client to be included, the license has to either be activated AND 
allowed, or else it can be not allowed AND expired. In other words, ( (activated AND allowed) OR ((NOT)allowed AND 
expired) ).

{
"licenseStatus":

[
{

"activated": true,
"allowed": true

},
{

"allowed": false,
"expired": true

}
]

}

Special Filter: os
The os filter is made up of 3 granularity levels. These are platform, version, and edition. These are meant to split the OS 
name into levels of detail as required by the user. Consider the following:

• platform: Microsoft Windows

• version: Microsoft Windows 7

• edition: Microsoft Windows 7 Professional

If a filter is set on the version “Microsoft Windows 7”, the result would include all editions of Windows 7. One or more of 
these granularity levels may be specified. If more than 1 granularity level is specified, the values are ORed together.

In the following example, all editions of “Microsoft Windows 7” are included, and also “Microsoft Windows Vista Home 
Premium”:

{
"type": "string",
"version": "Microsoft Windows 7",
"edition": "Microsoft Windows Vista Home Premium"

}

48 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Date-Range Reports
In the following example, the type is stringArray. Note that an array needs to be passed if the type is set as such, even if it 
is to contain only 1 element. In this case, the version can be either “Microsoft Windows 7” or “Microsoft Windows 8” (which 
are ORed together). Also, clients running on “Microsoft Windows XP Professional” are to be included.

{
"type": "stringArray",
"version": ["Microsoft Windows 7", "Microsoft Windows 8"],
"edition": ["Microsoft Windows XP Professional"]

}

Special Filter: geography
The geography filter is made up of 3 granularity levels. These are continent, country, and usState. 

The usState value applies only to United States. Continents and countries are presented in 2-letter codes. Countries follow 
ISO standard 3166-1 alpha-2. US states are presented in ISO 3166-2:US format.

In the following example, the clients have to be either:

• In the continents Asia or Oceania

• In the country Germany

• In the US states New York, New Jersey, or Kansas

{
"type": "stringArray",
"continent": ["AS", "OC"],
"country": ["DE"],
"usState": ["US-NY", "US-NJ", "US-KS"]

}

Important • In this filter, the type can be string or stringArray. Regular expressions are not supported in geography filters.

Special Filter: gpu
The gpu filter is made up of 2 granularity levels. These are vendor and model. Both are represented as string values.

In the following example, the clients have to have a GPU:

• From the vendors NVIDIA or Intel

• With the model AMD Radeon HD 4600

{
"type": "stringArray",
"vendor": ["NVIDIA", "Intel"],
"model": ["AMD Radeon HD 4600"]

}

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 49



Chapter 8 Generic Reports
Generic Date-Range Reports
Special Filters: optOut and backOff
The opt-out mechanism was introduced in SDK version 5.1.0. With this feature, vendors can have their application report to 
the Usage Intelligence servers that a user does not want to be tracked. Using this property, vendors can filter out 
installations that were opted-out. 

Similarly, backoff filtering was introduced with version 5.0.0. Backoff is when a product account runs over-quota and the 
server starts rejecting data. Although filtering for backed-off installations was introduced with version 5, it was also 
backported to previous versions. However, when a new installation with an SDK prior to version 5 tries to register with the 
server and is rejected, it is not marked as being once backed-off when it is eventually accepted by the server. With version 5 
onwards, the server flags an installation as being historically backed-off in such cases.

Both backOff and optOut filters are made up of 2 boolean sub-values: historical and current. 

• The historical value refers to installations that were once backed-off or opted-out. These may include installations 
that are still currently backed-off or opted-out. 

• The current value refers to the status during the last time that the client called the server. 

Therefore, if an installation was opted-out yesterday but got opted-in today, it will be marked as historically opted-out but 
not currently opted-out.

In the following example, for a client to be included, the optOut status has to either be historical AND not current, or 
else it can be not historical (i.e. users have to be currently opted-in but used to be opted-out at some point or never 
opted out).

{
"optOut":

[
{

"historical": true,
"current": false

},
{

"historical": false
}

]
}

Special Filter: lifetimeEventUsage
Using lifetime event usage filters, clients can be filtered based on whether a particular event or set of events occurred or 
not within the client’s lifetime. Alternatively, one can set a filter based on the number of times an event has occurred.

In the following example, clients that are included must have done the “File Operations - Open” event at least 5 times to be 
counted.

{
 "category": "File Operations",
 "name": "Open",
 "min": 5

}

In the following example, clients must have done either “File Operations - Open” or “File Operations - Save” for a combined 
total of between 10 to 50 times.
50 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Date-Range Reports
{
"combiArray": [

 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Open"

 },
 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Save",

 }
],

"min": 10,
"max": 50

}

In the following example, clients must have done any event within the “File Operations” category for a combined total of 
not more than 100 times. This is done using a regular expression in the name.

{
"combiArray": [

{
"categoryType": "string",
"nameType": "regex",
"category": "File Operations",
"name": ".*"

}
 ],

"max": 100
}

Special Filter: reachOutDeliveries
Using ReachOut delivery filters, clients can be filtered based on whether a particular ReachOut message or a combination 
of ReachOut messages were delivered or not within the client’s lifetime.

The filter consists of a JSON array that includes one or more objects. Each object is a combination of delivered and 
undelivered campaigns, and the different combinations are ORed together. Therefore, it is possible to show users that 
either received ReachOut message 1 but not 2, or else received 3 but not 4 as in the following example.

In the following example, we are looking for clients who either received campaign 1 but not 2, OR received campaign 2 but 
not 3.

[
 {"auto": {"delivered": ["1"], "undelivered":["2"]}},
 {"auto": {"delivered": ["2"], "undelivered":["3"]}}

]

The above example contains only “auto” ReachOut campaigns. Manual campaigns can be specified using “manual” 
instead of “auto” as in the above example. Each object can contain a mix of “auto” and “manual” campaigns.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 51



Chapter 8 Generic Reports
Generic Date-Range Reports
<NULL> Values in Global Filters (Date-Range Reports)
Most of the available properties can include null values. There are different reasons why a value would be null. When these 
are properties that are set by the application, the possible reasons why a value would be null are: cases where the value has 
not been set by the application (such as prodBuild never being set), and cases where values are set to an empty string (“”) 
or to a string containing “<NULL>”. 

One other reason is that although these values have been set, the SDK has not yet had time to sync with the servers to 
provide this new information. 

In cases where the properties are set automatically such as hardware or OS related information, the values would be null if 
the SDK failed to retrieve that value from the OS or if the server failed to identify the value retrieved by the SDK. 

Other reasons include cases where Java version is requested from an application that does not use the Java SDK, US state 
is requested for users who are not running within the US, etc.

The following are the properties that support null values:

prodVersion
prodEdition
prodBuild
prodLanguage
machineId
formFactor
vm
cpuType
cpuCores
ram
resolutionWidth
resolutionHeight
javaVersion
javaVmVersion
javaVmName
javaVendor
javaRuntime
javaGraphics
osLanguage
licenseKey
C01 .. C20 (Custom properties)
os
geography
gpu

Null values can be requested either on their own or as part of a filter containing other values.

The following example would return only cases where the prodVersion is null:

{
"prodVersion":

{
"includeNull": true

}
}

The following example would return cases where the prodVersion is either 1.1, 1.2 or null:

{
"prodVersion":
52 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Date-Range Reports
{
"type": "stringArray",
"value": ["1.1", "1.2"],
"includeNull": true

}
}

By default, when specifying a filter, null values would not be included. Therefore, in the following example, only clients 
with prodVersion set to 1.1 or 1.2 will be included, while null values are excluded:

{
"prodVersion":

{
"type": "stringArray",
"value": ["1.1", "1.2"]

}
}

However, if no filter is specified, then nulls are included by default. Therefore, if you want to include any value of 
prodVersion as long as it is not null, a prodVersion filter needs to be included as follows:

{
"prodVersion":

{
"type": "regex",
"value": ".*",
"includeNull": false

}
}

In the case of filters that use sub-properties (os, geography, and gpu), the includeNull filter is to be included in the sub-
property and applies to that specific sub-property only. In order to be able to include the includeNull property, instead of 
providing the value as a string or an array of strings, the value of the sub-property must be a JSON object that contains a 
property named “value”, and another named “includeNull”. Each of these properties is optional, but at least one of them 
must be present.

In the case of geography, this has a very particular meaning. Requesting for null “country” value does not return all cases 
where the country could not be retrieved, but only cases where the continent could be retrieved but the country could not. 
Similarly, requesting null “usState” returns cases where the continent and country could be retrieved but the US state 
could not. This does not include clients that are not situated in the US. If you are interested in finding clients where we 
could not detect any geographical data, the includeNull filter needs to be applied in the continent sub-property.

In the following example, we are requesting cases where we know that the client is within the US but the state could not be 
identified:

{
"geography":

{
"type": "string",
"country": "US",
"usState":

{
"includeNull": true

}
}

}

In the following example, we are requesting cases where the GPU is either “NVIDIA”, “AMD” or null (unidentified):
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 53



Chapter 8 Generic Reports
Generic Date-Range Reports
{
"gpu":

{
"type": "stringArray",
"vendor":

{
"value": ["NVIDIA", "AMD"],
"includeNull": true

}
}

}

Segmentation and Levels (Date-Range Reports)
Report data may be segmented in up to 3 levels. Each level represents a property. Using multi-level segmentation, you can 
create hierarchical reports that are used to drill down based on the property values. For example, you can create a report 
that splits all the users based on which edition they are using. Then, you can split the user counts for each edition based on 
product version on level 2. Finally, the user counts for each product version can be split up by product build on level 3.

Such multi-level reporting is available only when not splitting by date. Splitting by date is meant to be used in timeline 
reports, and creating such a hierarchy for each date would result in a huge data set which would only have limited use. 
When date splitting is used, segmentation with 1 level is still allowed, however. This allows creating timeline reports where 
each line represents a property value, such as comparing usage trend for version 1 vs version 2.

Segmentation is optional. In order not to split data by any property, you may either not include a levels property in the 
request object, or else leave the levels object empty. The following examples show the difference between not requesting 
any segmentation, requesting a single level, and requesting 2 levels:

Table 8-2 • Segmentation and Levels

Number of Levels Description

0 Levels • New Users: 30

• Active Users: 100

• Lost Users: 20

1 Level Product Versions:

• Version 1:

• New Users: 10

• Active Users: 30

• Lost Users: 8

• Version 2:

• New Users: 20

• Active Users: 70

• Lost Users: 12
54 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Date-Range Reports
In the above examples, the first example, 0 Levels, is showing a case where no segmentation is being applied. 

The second example, 1 Level, is showing a response where a single level of segmentation has been requested. In this case, 
segmentation is being done based on product versions. For each product version, one can see the number of new, active, 
and lost users within the specified date range. Segmenting by 1 level is also possible in reports that use date splitting, so, in 
a similar example, one would be able to see how many users were using a specific version on each day within the date 
range. 

The third example, 2 Levels, shows 2 levels of segmentation. In this example, one can see how many new, active, and lost 
users were using each version, and then, that data is further split by product edition. A further level is also allowed, so, for 
example one may choose to segment each product edition by product language.

The properties that are available for segmentation are the same ones that are used for Global Filters. There are 4 properties 
that require special formatting. These are described below.

Segment levels are to be defined in a property inside the main JSON object named “levels”. This property should contain a 
JSON object which contains the following members:

• property (string)—The name of the property by which to segment. Note that in case of os, geography, licenseStatus 
and gpu, a special format is used.

• segments (array)—An array containing a number of JSON objects. The format of these object is described in the Level 
Segments Format section below.

2 Levels Product Versions:

• Version 1:

• New Users: 10

• Active Users: 30

• Lost Users: 8

Product Editions:

• Premium:

• New Users: 4

• Active Users: 13

• Lost Users: 1

• Standard:

• New Users: 6

• Active Users: 17

• Lost Users:  7

Product Versions:

• Version 2:

• New Users: 20

• Active Users: 70

• Lost Users: 12

Product Editions:

• Premium:

• New Users: 5

• Active Users: 40

• Lost Users: 4

• Standard:

• New Users: 15

• Active Users: 30

• Lost Users: 8

Table 8-2 • Segmentation and Levels

Number of Levels Description
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 55



Chapter 8 Generic Reports
Generic Date-Range Reports
• sort (string)—Optional property to specify how the segments in this level are to be sorted. Possible values are alpha, 
new, active, and lost. alpha refers to alphabetical sorting which is based on the segment label. The other 3 are based 
on the client statuses. Note that if sorting by new, active, or lost users, that particular client status must be included in 
the clientStatus array. If this property is not included, the data is sorted alphabetically by default.

• sortDirection (string)—Optional property to specify whether to sort in ascending or descending order. Possible 
values are asc and desc. If not specified, data is sorted in ascending order by default.

For more information, see:

• Level Segments Format

• String-Based Segmentation Properties

• Numeric Segmentation Properties

• Boolean Segmentation Properties

• Special Segmentation Properties

• <NULL> Values in Segmentation and Levels (Date-Range Reports)

Level Segments Format
Segments are defined as JSON objects. A single JSON object may create a single item on a table (or a single series on a 
timeline chart), or it may create a number of items/series if splitting is enabled. Each object should contain the following:

• type (string)—The data type of the value. Can be string, stringArray, regex, number or numberRange based on 
whether the property is string-based (String-Based Filters) or numeric (Numeric Filters).

• value (string/array/number)—An exact string, an array of strings, a regular expression or a numeric value. This 
property should not be used if type is numberRange. Format is based on whether the property is string-based (String-
Based Filters) or numeric (Numeric Filters).

• min (number)—Used only if the type is numberRange. Contains the minimum numeric value to include in this segment. 
May be combined with max.

• max (number)—Used only if the type is numberRange. Contains the maximum numeric value to include in this segment. 
May be combined with min.

• split (boolean)—Used only if the type is stringArray or regex. This specifies whether to split the returned data based 
on each different value matched by the regular expression or array (true), or to join all the clients that match the value 
as 1 table value or series (false).

• segmentLabel (string)—Used only if split is false or if type is numberRange. This is required to give a name to a series 
when not splitting by value. It is important that the name given is unique.

• limit (integer)—Optional property to set the limit on the maximum number of table values or series that should be 
produced by this set of values. To be used only if split is true.

String-Based Segmentation Properties
The following properties are stored as strings:

machineId
clientId
56 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Date-Range Reports
prodVersion
prodEdition
prodBuild
prodLanguage
licenseType
formFactor *
osLanguage
osWordLength *
cpuType *
javaVersion *
javaVendor *
javaRuntime *
javaGraphics *
javaVmVersion *
javaVmName *
vm *
C01 .. C20 (Custom properties)
licenseKey *

Note • licenseKey requires a special user permission to be used for segmentation.

Note • Properties marked with an asterisk (*) are based on the current (latest known) values.

The type field when using one of the above properties needs to be string, stringArray or regex. A value field is always 
required. The contents of this field should be according to the specified type. 

• If string is specified, then the value field must contain a single string that needs to be matched precisely with the 
stored data. 

• If stringArray is specified, then the value field must contain an array of strings where one of which needs to match 
precisely with the stored data. 

• If specifying a regex, the value field should contain a string which is treated as a regular expression and the stored 
data will be matched against it using regular expression rules.

Example Using 1-Level Segmentation by string, stringArray, and regex Values
{

"level1": {
"property": "prodVersion",
"segments": [

{
"type": "string",
"value": "1.0"

},
{

"type": "stringArray",
"value": ["2.0", "2.1", "3.1"],
"split": false,
"segmentLabel": "Versions 2 and 3"

},
{

"type": "regex",
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 57



Chapter 8 Generic Reports
Generic Date-Range Reports
"value": "^4\..*",
"split": false,
"segmentLabel": "All version 4"

},
{

"type": "regex",
"value": "^5\..*",
"split": true

}
]

}
}

In the above example, we are requesting a report with multiple segments. The first segment contains installations running 
version 1.0. Notice how this does not require a “split” property since there is only 1 value and therefore no further 
splitting is possible. The second segment contains versions 2.0, 2.1 and 3.1. In this case, the “split” property is required, 
and since we are requesting the API to combine these 3 versions, we must provide a “segmentLabel” value so that the 
returned data can be identified. The third segment is similar, although in this case the request is built using a regular 
expression. In this case, all versions starting with “4.” are to be included into one combined segment.

The last segment is different from the rest because we are requesting the API to split the data (split is set to true). 
Therefore, this can produce much more than 1 segment. In this case, we could see segments such as “5.1”, “5.2”, etc. 
Notice how since we are splitting, we should not provide a segmentLabel value since the labels are built using the different 
values that are found in the data.

Numeric Segmentation Properties
The following properties are stored as numeric values:

cpuCores *
displayCount *
ram *
resolutionWidth *
resolutionHeight *
lifetimeRuntimeMinutes *
lifetimeSessionCount *
screenPpi *
javaVmRam *

Note • Properties marked with an asterisk (*) are based on the current (latest known) values.

The type field in the above properties needs to be number or numberRange. If number is specified, then a value field must 
also be present. The value field should contain a number, which may contain a decimal point if required. If numberRange is 
specified, then the value field should NOT be used. Instead, the properties min and max are to be used. These refer to the 
minimum and maximum number to be included in the report. If only one limit needs to be set, the other property is to be 
left out. Therefore, if you want to include installations with up to 2 display devices, you would not specify a min value, but 
instead specify only a max and set it as 2.

Example Using 1-Level Segmentation by number, and numberRange Values
{

"level1": {
"property": "cpuCores",
58 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Date-Range Reports
"segments": [
{

"type": "number",
"value": 1,

},
{

"type": "numberRange",
"min": 2,
"max": 4,
"segmentLabel": "2 - 4"

},
{

"type": "numberRange",
"min": 5,
"segmentLabel": "5 +"

}
]

}
}

In the above example, we are requesting a report with 3 segments. The first segment contains only installations running on 
1 CPU core, the second segments contains installations running on 2, 3, or 4 cores (range 2 - 4), while the last segment 
contains all installations which are running on a machine with 5 or more CPU cores. Note how when the type was 
numberRange, we had do specify a segmentLabel which is a free string that will be used by the user to identify what is being 
included in that specific segment.

Boolean Segmentation Properties
The following properties are stored ad boolean values:

touchScreen

The type field needs to be boolean, and the value must be true or false. A segmentLabel field is also required

Example Using 1-Level Segmentation by Boolean Value
{

"level1": {
"property": "touchScreen",
"segments": [

{
"type": "boolean",
"value": true,
"segmentLabel": "Yes"

},
{

"type": "boolean",
"value": false,
"segmentLabel": "No"

},
{

"includeNull": true,
"segmentLabel": "Unknown"

}
]

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 59



Chapter 8 Generic Reports
Generic Date-Range Reports
}
}

In the above example, we are requesting a report with 3 segments. The first segment contains installations on which a 
touch screen was detected, the second one where no touch screen has been detected, while the last one is where we could 
not detect whether a touch screen is present due to the client using an old SDK which did not have touch screen detection 
support.

Special Segmentation Properties
Some properties need to be represented in a special format due to their unique requirements. These special properties are:

• Special Segmentation Format: licenseStatus

• Special Segmentation Format: os

• Special Segmentation Format: geography

• Special Segmentation Format: gpu

• Special Segmentation Format: optOut and backOff

Special Segmentation Format: licenseStatus
The licenseStatus value is made up of 4 sub-values: activated, blocked, expired and allowed. These are presented as 
boolean values. Any number of segments can be defined, and each segment can contain any subset of the 4 sub-values. 
These values are ANDed together. A segmentLabel value is required.

In the following example, 2 segments are specified - the first one showing blocked AND not expired and the second one 
showing allowed AND activated:

[
{

"segmentLabel": "BL and not EXP",
"blocked": true,
"expired": false

},
{

"segmentLabel": "WL and ACT",
"allowed": true,
"expired": true

}
]

Special Segmentation Format: os
The os value is made up of 3 granularity levels - platform, version, and edition. A particular level needs to be selected, 
and this is to be included in the property name such as os.version or os.edition. Different granularity levels can be 
requested for different segmentation levels. Therefore, it is possible to generate a 3-level hierarchical tree in which level 1 
would show the OS platform, level 2 would show the version, and level 3 would show the full name including the OS edition 
or sub-version. For a description of the differences between the 3 granularity levels, refer to Special Filter: os.

The following example shows the levels object requesting 3 granularity levels as described above:
60 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Date-Range Reports
{
"level1": {

"property": "os.platform",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

},
"level2": {

"property": "os.version",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

},
"level3": {

"property": "os.edition",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

}
}

In the above example, no filtering is being done, and instead, a regular expression to include everything is set as the value. 
This will result in all OS platforms, versions, and editions to be included in the hierarchy.

Special Segmentation Format: geography
The geography value is made up of 3 granularity levels - continent, country, and usState. These granularity levels are 
explained in Special Filter: geography. A particular level needs to be selected, and this is to be included in the property 
name such as geography.continent or geography.country. Different granularity levels can be requested for different 
segmentation levels. Therefore, it is possible to generate a 3-level hierarchical tree in which level 1 would show the 
continent, level 2 would show the country, and level 3 would show the US state (for United States only).

The following example shows the levels object requesting 3 granularity levels as described above:

{
"level1": {

"property": "geography.continent",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 61



Chapter 8 Generic Reports
Generic Date-Range Reports
]
},
"level2": {

"property": "geography.country",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

},
"level3": {

"property": "geography.usState",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

}
}

In the above example, no filtering is being done, and instead, a regular expression to include everything is set as the value. 
This will result in all the continents, countries and US states (where applicable) to be included in the hierarchy.

Special Segmentation Format: gpu
The gpu value is made up of 2 granularity levels - vendor and model. These granularity levels are explained in Special Filter: 
gpu. A particular level needs to be selected, and this is to be included in the property name, namely gpu.vendor or 
gpu.model. Different granularity levels can be requested for different segmentation levels. Therefore, it is possible to 
generate a 2-level hierarchical tree in which level 1 would show the vendor, and level 2 would show the model number.

The following example shows the levels object requesting 2 granularity levels as described above:

{
"level1": {

"property": "gpu.vendor",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

},
"level2": {

"property": "gpu.model",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}

62 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Date-Range Reports
]
}

}

In the above example, no filtering is being done, and instead, a regular expression to include everything is set as the value. 
This will result in all the GPU vendors and models to be included in the hierarchy.

Special Segmentation Format: optOut and backOff
Both backOff and optOut values are made up of 2 boolean sub-values: historical and current. Any number of segments can 
be defined, and each segment can contain any subset of the 2 sub-values. These values are ANDed together. A 
segmentLabel value is required.

In the following example, 2 segments are specified - the first one showing historical AND not current and the second one 
showing not historical (i.e. never opted-out):

[
{

"segmentLabel": "HISTORICAL and not CURRENT",
"historical": true,
"current": false

},
{

"segmentLabel": "Never opted-out",
"historical": false

}
]

<NULL> Values in Segmentation and Levels (Date-Range Reports)
Null values in segmentation are to be requested in a similar way to <NULL> Values in Global Filters (Date-Range Reports). 
The same properties that support null in filtering also support null in segmentation.

By default, when segmenting, null values are not included within the segments, since only the values that have been 
specified in each segment are included. Null values don’t match any regular expression, so the only way to request null 
values to be included is to specify “includeNull” as true in a similar way to filtering. In segmentation, null values are 
returned as “<NULL>”. The API considers all cases where the data has never been set from the SDK, set as an empty string, 
or set as a string containing “<NULL>” to be the same.

The following example requests all values of prodBuild including null:

{
"level1": {

"property": "prodBuild",
"segments": [

{
"type": "regex",
"value": ".*",
"includeNull": true

}
]

}
}

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 63



Chapter 8 Generic Reports
Generic Date-Range Reports
In the case of segmentation properties that use sub-properties (os, geography, and gpu), the includeNull value is to be 
included in the sub-property and applies to that specific sub-property only. In order to be able to include the includeNull 
property, instead of providing the value as a string or an array of strings, the value of the sub-property must be a JSON 
object that cointains a property named “value”, and another named “includeNull”. Each of these properties is optional, but 
at least one of them must be present. The same rules that apply for filtering these types of properties for null values also 
apply to segmentation.

In the following example, we are requesting segmentation by continent and are also requesting the number of clients 
where we could not detect the geographical location:

{
"level1": {

"property": "geography",
"segments": [

{
"type": "regex",
"continent": {

 "value": ".*",
 "includeNull": true

 }
}

]
}

}

Results Format for Reports Using Date Splitting
The results object contains a number of members having a date as the key and an object as the value. The date is formatted 
as YYYY-MM-DD regardless of whether the report is being split by day, week, or month. If the report is being split by week or 
by month, the first date of the week or month is used.

If segmentation level 1 has been specified in the request, each sub-object contains a number of values. The keys are the 
property values that were specified in the request as level 1. Therefore, if prodVersion was requested as the property of 
level 1, the keys would be the different product version numbers or the segmentLabel that was specified. The value 
contains an object with up to 3 members. These are new, active, and lost, referring to new, active, and lost clients within 
this day, week, or month based on what was specified in the *clientStatus property in the request. Refer to the following 
example for a sample request and response.

• Full Example Request/Response of Daily Timeline Report with Segmentation

• Results Format for Reports Using Date Splitting with No Segmentation Levels

Full Example Request/Response of Daily Timeline Report with Segmentation
The following example request and response show a timeline report being segmented by selected product versions. 
Versions 1 and 1.5 are being combined into a single series, while version 2 is in a series on its own.

Example Request
POST /reporting/generic/dateRange HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json
64 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Date-Range Reports
{
"user": "testuser@test.com",
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 12345678901,
"dateSplit": "day",
"startDate": "2018-08-01",
"stopDate": "2018-08-03",
"clientStatus": [

"new",
"active",
"lost"

],
"daysUntilDeclaredLost": 30,
"dateReportedLost": "dateDeclaredLost",
"globalFilters": {

"prodLanguage": {
"type": "stringList",
"value": ["English", "French"]

},
"os": {

"type": "string",
"version": "Microsoft Windows 7"

}
},
"levels": {

"level1": {
"property": "prodVersion",
"segments": [

{
"type": "stringArray",
"value": [

"1",
"1.5"

],
"segmentLabel": "1 and 1.5",
"split": false

},
{

"type": "string",
"value": "2"

}
]

}
}

}

Example Server Response
HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "OK",
"results": {

"2018-08-01": {
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 65



Chapter 8 Generic Reports
Generic Date-Range Reports
"2": {
"active": 80,
"new": 2,
"lost": 0

},
"1 and 1.5": {

"active": 133,
"new": 0,
"lost": 4

}
},
"2018-08-02": {

"2": {
"active": 58,
"new": 18,
"lost": 0

},
"1 and 1.5": {

"active": 74,
"new": 0,
"lost": 5

}
},
"2018-08-03": {

"2": {
"active": 38,
"new": 20,
"lost": 0

},
"1 and 1.5": {

"active": 31,
"new": 0,
"lost": 1

}
}

}
}

Results Format for Reports Using Date Splitting with No Segmentation 
Levels

If no segmentation levels have been specified in the request, the results object still contains members having a date as the 
key and an object as the value. However, the sub-object contains the new, active, and lost values or a subset of them.

The following is and example of the results object with only new and active specified in the clientStatus property.

{
"2018-05-01": {

"active": 643,
"new": 27

},
"2018-05-02": {

"active": 637,
"new": 31

},
66 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Date-Range Reports
"2018-05-03": {
"active": 322,
"new": 19

}
}

Results Format for Reports Without Date Splitting
The results object contains a hierarchy of sub-objects depending on how many segmentation levels were requested. 

If at least 1 level was requested, the results object will contain only 1 member named level1. The value of level1 is a JSON 
object with a member for each segment of level 1. Therefore, assuming the level 1 property is prodVersion, the keys 
contain product versions or the segment labels that were specified. The value for each of these members will be an object 
containing an object named totals and if 2 or more levels were requested, another object named level2. 

The totals object will contain up to 3 members - new, active, and lost, based on what was specified in the clientStatus 
property in the request. If the level2 object is present, it will be in the same format as level1. Similarly, the level2 object 
may contain an object named level3. Refer to Full Example Request/Response of Report with 2-Level Segmentation for a 
sample request and response.

• Full Example Request/Response of Report with 2-Level Segmentation

• Results Format for Reports without Date Splitting and with No Segmentation Levels

Full Example Request/Response of Report with 2-Level Segmentation
The following example request and response show a requested report not split by dates but with the data segmented by 
selected product versions in level 1 and all product editions in level 2. In level 1, product versions 1 and 1.5 are being 
combined into a single segment, while product version 2 is in a segment on its own. In level 2, each known product edition 
will be shown in a segment on its own.

Example Request
POST /reporting/generic/dateRange HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 12345678901,
"dateSplit": null,
"startDate": "2018-08-01",
"stopDate": "2018-08-03",
"clientStatus": [

"new",
"active",
"lost"

],
"daysUntilDeclaredLost": 30,
"dateReportedLost": "dateDeclaredLost",
"globalFilters": {
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 67



Chapter 8 Generic Reports
Generic Date-Range Reports
"os": {
"type": "string",
"version": "Microsoft Windows 7"

}
},
"levels": {

"level1": {
"property": "prodVersion",
"segments": [

{
"type": "stringArray",
"value": [

"1",
"1.5"

],
"segmentLabel": "1 and 1.5",
"split": false

},
{

"type": "string",
"value": "2"

}
]

},
"level2": {

"property": "prodEdition",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

}
}

}

Example Server Response
HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "OK",
"levelLabels": {

"level1": "prodVersion",
"level2": "prodEdition"

},
"results": {

"level1": {
"2": {

"totals": {
"new": 40,
"active": 138,
"lost": 0

},
68 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Date-Range Reports
"level2": {
"Lite": {

"totals": {
"new": 5,
"active": 30,
"lost": 0

}
},
"Premium": {

"total": {
"new": 5,
"active": 17,
"lost": 0

}
},
"Standard": {

"totals": {
"new": 30,
"active": 91,
"lost": 0

}
}

}
},
"1 and 1.5": {

"totals": {
"new": 0,
"active": 174,
"lost": 10

},
"level2": {

"Lite": {
"total": {

"new": 0,
"active": 48,
"lost": 5

}
},
"Premium": {

"totals": {
"new": 0,
"active": 13,
"lost": 1

}
},
"Standard": {

"totals": {
"new": 0,
"active": 113,
"lost": 4

}
}

}
}

}
}

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 69



Chapter 8 Generic Reports
Generic Current Reports
}

Results Format for Reports without Date Splitting and with No Segmentation 
Levels

If no segmentation levels are specified, the results object will be a simple JSON object with up to 3 members - new, active, 
and lost, depending on what was requested in the clientStatus property in the request. The following is an example of a 
complete response:

{
"status": "OK",
"results": {

"active": 1734,
"new": 729,
"lost": 387

}
}

Generic Current Reports
This reporting mechanism is to be used for generating reports regarding the current status of your product user base. 
Depending on the request, this can create pie/bar charts, geographical maps, or hierarchical tables.

• Request/Response Parameters Summary

• Global Filters

• Segmentation and Levels (Current Reports)

• Results Format

Request/Response Parameters Summary
POST /reporting/generic/current
70 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Current Reports
The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Table 8-3 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. Required 
only for non-cookie authentication.

• sessionId (string)—The sessionId obtained via POST /auth/login. Required only 
for non-cookie authentication.

• productId (integer)—The product ID on which this request is being done.

• groupBy (string)—Optional parameter to specify the property with which to group 
installations. By default, this value is considered to be clientId. Other possible 
options are machineId, licenseKey or any custom property of type 3.

• startDate (string)—The first date of the date range on which to base the report. 
This is to be formatted as YYYY-MM-DD.

• clientStatus (array)—The client statuses to show in the report. Each report can 
show any combination of new, active, and lost users. This is to be presented as an 
array of up to 3 strings which can be new, active, and lost.

• daysUntilDeclaredLost (integer)—Required only if the clientStatus array 
contains lost. This specifies the number of consecutive days of inactivity that have 
to pass until a client installation is declared lost.

• dateReportedLost (string)—Required only if the clientStatus array contains lost. 
When an installation is lost, it can either be shown as lost on the date it last 
contacted the Usage Intelligence servers (dateLastSeen) or else it can be shown as 
lost when it was declared lost (last date when it contacted the Usage Intelligence 
servers + the number of days specified in daysUntilDeclaredLost) 
(dateDeclaredLost). Therefore, the permitted values are dateLastSeen and 
dateDeclaredLost.

• globalFilters (object)—JSON object containing the filters to be applied to the 
available data. Details about these filters can be found in the Global Filters section.

• levels (object)—Optional JSON object that describes how data is to be split into 
segments in each level. Requests where dateSplit is null can have up to 3 levels 
while when date splitting is being done, 0 or 1 levels can be specified. Details about 
levels and segmentation can be found in the Segmentation and Levels (Date-Range 
Reports) section.

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• levelLabels (object)—Present only on responses where dateSplit is null. When 
present, this contains the property names of each level as requested.

• results (object)—Contains the results as requested represented as a JSON object. 
The result format is described below.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 71



Chapter 8 Generic Reports
Generic Current Reports
Global Filters
Most of the available filter properties are string-based. This means that when applying a filter, the requested field can be 
represented as a string, stringArray or regex. There are also some filters which are numeric. These filters should be 
represented as number or numberRange.

• String-Based Filters

• Numeric Filters

• Boolean Filters

• Date Range Filters

• Special Filters

• <NULL> Values in Global Filters (Current Reports)

String-Based Filters
The following properties are stored as strings:

machineId
clientId
prodVersion
prodEdition
prodBuild
prodLanguage
licenseType
formFactor
osLanguage
osWordLength
cpuType
dotNetVersion
javaVersion
javaVendor
javaRuntime
javaGraphics
javaVmVersion
javaVmName
vm
C01 .. C20 (Custom properties)
licenseKey

Note • licenseKey requires a special user permission to be used as a filter.

The type field in the above filters needs to be string, stringArray or regex. A value field is always required. The contents of 
this field should be according to the specified type. 

• If string is specified, then the value field must contain a single string that needs to be matched precisely with the 
stored data. 

• If stringArray is specified, then the value field must contain an array of strings where one of which needs to match 
precisely with the stored data. 
72 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Current Reports
• If specifying a regex, the value field should contain a string which is treated as a regular expression and the stored 
data will be matched against it using regular expression rules.

Example Filter Using a String Value

In this example, the product build value needs to be exactly "3014.int-12214":

{
"prodBuild":

{
"type": "string",
"value": "3014.int-12214"

}
 }

Example Filter Using a String Array

In this example, the product build value needs to be either "3014.int-12214", "3017.enx-57718", or "4180.vrx-81059". Note 
that since the type is declared as stringArray, the value field needs to contain an array. Consider all elements in the array 
to have an OR logical expression between them.:

{
"prodBuild":

{
"type": "stringArray",
"value": ["3014.int-12214", "3017.enx-57718", "4180.vrx-81059"]

}
}

Example Filter Using a Regular Expression

In this example, the product build value needs to start with "30" and end with "18" whilst having 10 characters in between:

{
 "prodBuild":

 {
 "type": "regex",
 "value": "^30.{10}18$"

 }
}

Numeric Filters
The following properties are stored as numeric values:

cpuCores
displayCount
ram
resolutionWidth
resolutionHeight
lifetimeRuntimeMinutes
lifetimeSessionCount
screenPpi
javaVmRam

The type field in the above filters needs to be number or numberRange. 
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 73



Chapter 8 Generic Reports
Generic Current Reports
• If number is specified, then a value field must also be present. The value field should contain a number, which may 
contain a decimal point if required. 

• If numberRange is specified, then the value field should NOT be used. Instead, the properties min and max are to be 
used. These refer to the minimum and maximum number to be included in the report. If only one limit needs to be set, 
the other property is to be left out. Therefore, if you want to include installations with up to 2 display devices, you 
would not specify a min value, but instead specify only a max and set it as 2.

Example Filter Using a Number Value

In this example, the number of display devices needs to be exactly 3:

{
"displayCount":

{
"type": "number",
"value": 3

}
 }

Example Filter Using a Number Range Value

In this example, the RAM needs to be between 1025MB and 4096MB (both included):

{
"ram":

{
"type": "numberRange",
"min": 1025,
"max": 4096

}
 }

Boolean Filters
The following property is stored as boolean:

touchScreen

The type field in the above filters needs to be boolean. The value must be true or false. In the following filter, clients with a 
touch screen are being requested.

{
"touchScreen":

{
"type": "boolean",
"value": true

}
}

Date Range Filters
The following properties are stored as dates:

dateInstalled
74 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Current Reports
dateLastSeen

The type field in the above filters needs to be date or dateRange. 

• If date is specified, then a value field must also be present. The value field should contain a date. 

• If dateRange is specified, then the value field should NOT be used. Instead, the properties min and max are to be used. 
These refer to the minimum and maximum dates to be included in the report. If only one limit needs to be set, the 
other property is to be left out. 

In the following example, users installed after January 1st 2018 are to be shown:

{
 "dateInstalled":

 {
 "type": "dateRange", 
"min": "2018-01-01"

 }
}

Note that all dates must be in ISO 8601 format.

Special Filters
Some filters need to be represented in a special format due to their unique requirements. These special filters are:

• Special Filter: licenseStatus

• Special Filter: os

• Special Filter: geography

• Special Filter: gpu

• Special Filters: optOut and backOff

• Special Filter: lifetimeEventUsage

• Special Filter: reachOutDeliveries

Special Filter: licenseStatus
The licenseStatus filter is made up of 4 sub-values: activated, blocked, expired and allowed. These are presented as 
boolean values. Unlike other filters, this filter is presented as an array of JSON objects. Each object can contain a subset (or 
all) of these 4 boolean values. 

Consider the following example. In this example, for a client to be included, the license has to either be activated AND 
allowed, or else it can be not allowed AND expired. In other words, ( (activated AND allowed) OR ((NOT)allowed AND 
expired) ).

{
"licenseStatus":

[
{

"activated": true,
"allowed": true

},
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 75



Chapter 8 Generic Reports
Generic Current Reports
{
"allowed": false,
"expired": true

}
]

}

Special Filter: os
The os filter is made up of 3 granularity levels. These are platform, version, and edition. These are meant to split the OS 
name into levels of detail as required by the user. Consider the following:

• platform: Microsoft Windows

• version: Microsoft Windows 7

• edition: Microsoft Windows 7 Professional

If a filter is set on the version "Microsoft Windows 7", the result would include all editions of Windows 7. One or more of 
these granularity levels may be specified. If more than 1 granularity level is specified, the values are ORed together.

In the following example, all editions of "Microsoft Windows 7" are included, and also "Microsoft Windows Vista Home 
Premium":

{
"type": "string",
"version": "Microsoft Windows 7",
"edition": "Microsoft Windows Vista Home Premium"

}

In the following example, the type is stringArray. Note that an array needs to be passed if the type is set as such, even if it 
is to contain only 1 element. In this case, the version can be either "Microsoft Windows 7" or "Microsoft Windows 8" (which 
are ORed together). Also, clients running on "Microsoft Windows XP Professional" are to be included.

{
"type": "stringArray",
"version": ["Microsoft Windows 7", "Microsoft Windows 8"],
"edition": ["Microsoft Windows XP Professional"]

}

Special Filter: geography
The geography filter is made up of 3 granularity levels. These are continent, country, and usState. The usState value 
applies only to United States. Continents and countries are presented in 2-letter codes. Countries follow ISO standard 
3166-1 alpha-2. US states are presented in ISO 3166-2:US format.

In the following example, the clients have to be either:

• In the continents Asia or Oceania

• In the country Germany

• In the US states New York, New Jersey, or Kansas

{
"type": "stringArray",
"continent": ["AS", "OC"],
76 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Current Reports
"country": ["DE"],
"usState": ["US-NY", "US-NJ", "US-KS"]

}

Important • In this filter, the type can be string or stringArray. Regular expressions are not supported in geography filters.

Special Filter: gpu
The gpu filter is made up of 2 granularity levels. These are vendor and model. Both are represented as string values.

In the following example, the clients have to have a GPU:

• From the vendors NVIDIA or Intel

• With the model AMD Radeon HD 4600

{
"type": "stringArray",
"vendor": ["NVIDIA", "Intel"],
"model": ["AMD Radeon HD 4600"]

}

Special Filters: optOut and backOff
The opt-out mechanism was introduced in SDK version 5.1.0. With this feature, vendors can have their application report to 
the Usage Intelligence servers that a user does not want to be tracked. Using this property, vendors can filter out 
installations that were opted-out. 

Similarly, backoff filtering was introduced with version 5.0.0. Backoff is when a product account runs over-quota and the 
server starts rejecting data. Although filtering for backed-off installations was introduced with version 5, it was also 
backported to previous versions. However, when a new installation with an SDK prior to version 5 tries to register with the 
server and is rejected, it is not marked as being once backed-off when it is eventually accepted by the server. With version 5 
onwards, the server flags an installation as being historically backed-off in such cases.

Both backOff and optOut filters are made up of 2 boolean sub-values: historical and current. 

• The historical value refers to installations that were once backed-off or opted-out. These may include installations 
that are still currently backed-off or opted-out. 

• The current value refers to the status during the last time that the client called the server. 

Therefore, if an installation was opted-out yesterday but got opted-in today, it will be marked as historically opted-out but 
not currently opted-out.

In the following example, for a client to be included, the optOut status has to either be historical AND not current, or 
else it can be not historical (i.e. users have to be currently opted-in but used to be opted-out at some point or never 
opted out).

{
"optOut":

[
{

"historical": true,
"current": false
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 77



Chapter 8 Generic Reports
Generic Current Reports
},
{

"historical": false
}

]
}

Special Filter: lifetimeEventUsage
Using lifetime event usage filters, clients can be filtered based on whether a particular event or set of events occurred or 
not within the client's lifetime. Alternatively, one can set a filter based on the number of times an event has occurred.

In the following example, clients that are included must have done the "File Operations - Open" event at least 5 times to be 
counted.

{
 "category": "File Operations",
 "name": "Open",
 "min": 5

}

In the following example, clients must have done either "File Operations - Open" or "File Operations - Save" for a combined 
total of between 10 to 50 times.

{
"combiArray": [

 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Open"

 },
 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Save",

 }
],

"min": 10,
"max": 50

}

In the following example, clients must have done any event within the "File Operations" category for a combined total of 
not more than 100 times. This is done using a regular expression in the name.

{
"combiArray": [

{
"categoryType": "string",
"nameType": "regex",
"category": "File Operations",
"name": ".*"

}
 ],

"max": 100
78 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Current Reports
}

Special Filter: reachOutDeliveries
Using ReachOut delivery filters, clients can be filtered based on whether a particular ReachOut message or a combination 
of ReachOut messages were delivered or not within the client's lifetime.

The filter consists of a JSON array that includes one or more objects. Each object is a combination of delivered and 
undelivered campaigns, and the different combinations are ORed together. Therefore, it is possible to show users that 
either received ReachOut message 1 but not 2, or else received 3 but not 4 as in the following example:

In the following example, we are looking for clients who either received campaign 1 but not 2, OR received campaign 2 but 
not 3.

[
 {"auto": {"delivered": ["1"], "undelivered":["2"]}},
 {"auto": {"delivered": ["2"], "undelivered":["3"]}}

]

The above example contains only "auto" ReachOut campaigns. Manual campaigns can be specified using "manual" 
instead of "auto" as in the above example. Each object can contain a mix of "auto" and "manual" campaigns.

<NULL> Values in Global Filters (Current Reports)
Most of the available properties can include null values. There are different reasons why a value would be null. When these 
are properties that are set by the application, the possible reasons why a value would be null are: cases where the value has 
not been set by the application (such as prodBuild never being set), and cases where values are set to an empty string (“”) 
or to a string containing “<NULL>”. 

One other reason is that although these values have been set, the SDK has not yet had time to sync with the servers to 
provide this new information. 

In cases where the properties are set automatically such as hardware or OS related information, the values would be null if 
the SDK failed to retrieve that value from the OS or if the server failed to identify the value retrieved by the SDK. 

Other reasons include cases where Java version is requested from an application that does not use the Java SDK, US state 
is requested for users who are not running within the US, etc.

The following are the properties that support null values:

prodVersion
prodEdition
prodBuild
prodLanguage
machineId
formFactor
vm
cpuType
cpuCores
ram
resolutionWidth
resolutionHeight
javaVersion
javaVmVersion
javaVmName
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 79



Chapter 8 Generic Reports
Generic Current Reports
javaVendor
javaRuntime
javaGraphics
osLanguage
licenseKey
C01 .. C20 (Custom properties)
os
geography
gpu

Null values can be requested either on their own or as part of a filter containing other values.

The following example would return only cases where the prodVersion is null:

{
"prodVersion":

{
"includeNull": true

}
}

The following example would return cases where the prodVersion is either 1.1, 1.2 or null:

{
"prodVersion":

{
"type": "stringArray",
"value": ["1.1", "1.2"],
"includeNull": true

}
}

By default, when specifying a filter, null values would not be included. Therefore, in the following example, only clients 
with prodVersion set to 1.1 or 1.2 will be included, while null values are excluded:

{
"prodVersion":

{
"type": "stringArray",
"value": ["1.1", "1.2"]

}
}

However, if no filter is specified, then nulls are included by default. Therefore, if you want to include any value of 
prodVersion as long as it is not null, a prodVersion filter needs to be included as follows:

{
"prodVersion":

{
"type": "regex",
"value": ".*",
"includeNull": false

}
}

80 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Current Reports
In the case of filters that use sub-properties (os, geography, and gpu), the includeNull filter is to be included in the sub-
property and applies to that specific sub-property only. In order to be able to include the includeNull property, instead of 
providing the value as a string or an array of strings, the value of the sub-property must be a JSON object that cointains a 
property named "value", and another named "includeNull". Each of these properties is optional, but at least one of them 
must be present.

In the case of geography, this has a very particular meaning. Requesting for null "country" value does not return all cases 
where the country could not be retrieved, but only cases where the continent could be retrieved but the country could not. 
Similarly, requesting null "usState" returns cases where the continent and country could be retrieved but the US state 
could not. This does not include clients that are not situated in the US. If you are interested in finding clients where we 
could not detect any geographical data, the includeNull filter needs to be applied in the continent sub-property.

In the following example, we are requesting cases where we know that the client is within the US but the state could not be 
identified:

{
"geography":

{
"type": "string",
"country": "US",
"usState":

{
"includeNull": true

}
}

}

In the following example, we are requesting cases where the GPU is either "NVIDIA", "AMD" or null (unidentified):

{
"gpu":

{
"type": "stringArray",
"vendor":

{
"value": ["NVIDIA", "AMD"],
"includeNull": true

}
}

}

Segmentation and Levels (Current Reports)
Report data may be segmented in up to 3 levels. Each level represents a property. Using multi-level segmentation, you can 
create hierarchical reports that are used to drill down based on the property values. For example, you can create a report 
that splits all the users based on which edition they are using. Then, you can split the user counts for each edition based on 
product version on level 2. Finally, the user counts for each product version can be split up by product build on level 3.

Segmentation is optional. In order not to split data by any property, you may either not include a levels property in the 
request object, or else leave the levels object empty. The following examples show the difference between not requesting 
any segmentation, requesting a single level, and requesting 2 levels:
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 81



Chapter 8 Generic Reports
Generic Current Reports
Consider the following examples:

In the above examples, the first example (0 Levels) is showing a case where no segmentation is being applied. 

Table 8-4 • Segmentation and Levels

Number of Levels Description

0 Levels • New Users: 30

• Active Users: 100

• Lost Users: 20

1 Level Product Versions:

• Version 1:

• New Users: 10

• Active Users: 30

• Lost Users: 8

• Version 2:

• New Users: 20

• Active Users: 70

• Lost Users: 12

2 Levels Product Versions:

• Version 1:

• New Users: 10

• Active Users: 30

• Lost Users: 8

Product Editions:

• Premium:

• New Users: 4

• Active Users: 13

• Lost Users: 1

• Standard:

• New Users: 6

• Active Users: 17

• Lost Users: 7

Product Versions:

• Version 2:

• New Users: 20

• Active Users: 70

• Lost Users: 12

Product Editions:

• Premium:

• New Users: 5

• Active Users: 40

• Lost Users: 4

• Standard:

• New Users: 15

• Active Users: 30

• Lost Users: 8
82 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Current Reports
The second example (1 Level) is showing a response where a single level of segmentation has been requested. In this case, 
segmentation is being done based on product versions. For each product version, one can see the number of new, active, 
and lost users from the specified start date up till now. 

The third example (2 Levels) shows 2 levels of segmentation. In this example, one can see how many new, active, and lost 
users were using each version, and then, that data is further split by product edition. A further level is also allowed, so, for 
example one may choose to segment each product edition by product language.

The properties that are available for segmentation are the same ones that are used for Global Filters. There are 3 properties 
that require special formatting. These are described below.

Segment levels are to be defined in a property named "levels". This property should contain a JSON object which contains 
2 members:

• property (string)—The name of the property by which to segment. Note that in case of os, geography, licenseStatus 
and gpu, a special format is used.

• segments (array)—An array containing a number of JSON objects. The format of these object is described in the Level 
Segments Format section below.

• sort (string)—Optional property to specify how the segments in this level are to be sorted. Possible values are alpha, 
new, active, and lost. alpha refers to alphabetical sorting which is based on the segment label. The other 3 are based 
on the client statuses. Note that if sorting by new, active, or lost users, that particular client status must be included in 
the clientStatus array. If this property is not included, the data is sorted alphabetically by default.

• sortDirection (string)—Optional property to specify whether to sort in ascending or descending order. Possible 
values are asc and desc. If not specified, data is sorted in ascending order by default.

For more information, see:

• Level Segments Format

• String-Based Segmentation Properties

• Numeric Segmentation Properties

• Boolean Segmentation Properties

• Special Segmentation Properties

• <NULL> Values in Segmentation and Levels (Current Reports)

Level Segments Format
Segments are defined as JSON objects. A single JSON object may create a single item on a table, or it may create a number 
of items/series if splitting is enabled. Each object should contain the following:

• type (string)—The data type of the value. Can be string, stringArray, regex, number or numberRange based on 
whether the property is string-based (String-Based Filters) or numeric (Numeric Filters).

• value (string/array/number)—An exact string, an array of strings, a regular expression or a numeric value. This 
property should not be used if type is numberRange. Format is based on whether the property is string-based (String-
Based Filters) or numeric (Numeric Filters).

• min (number)—Used only if the type is numberRange. Contains the minimum numeric value to include in this segment. 
May be combined with max.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 83



Chapter 8 Generic Reports
Generic Current Reports
• max (number)—Used only if the type is numberRange. Contains the maximum numeric value to include in this segment. 
May be combined with min.

• split (boolean)—Used only if the type is stringArray or regex. This specifies whether to split the returned data based 
on each different value matched by the regular expression or array (true), or to join all the clients that match the value 
as 1 table value or series (false).

• segmentLabel (string)—Used only if split is false or if type is numberRange. This is required to give a name to a series 
when not splitting by value. It is important that the name given is unique.

• limit (integer)—Optional property to set the limit on the maximum number of table values or series that should be 
produced by this set of values. To be used only if split is true.

String-Based Segmentation Properties
The following properties are stored as strings:

machineId
clientId
prodVersion
prodEdition
prodBuild
prodLanguage
licenseType
formFactor
osLanguage
osWordLength
cpuType
javaVersion
javaVendor
javaRuntime
javaGraphics
javaVmVersion
javaVmName
vm
C01 .. C20 (Custom properties)
licenseKey

Note • licenseKey requires a special user permission to be used for segmentation

The type field when using one of the above properties needs to be string, stringArray or regex. A value field is always 
required. The contents of this field should be according to the specified type. 

• If string is specified, then the value field must contain a single string that needs to be matched precisely with the 
stored data. 

• If stringArray is specified, then the value field must contain an array of strings where one of which needs to match 
precisely with the stored data. 

• If specifying a regex, the value field should contain a string which is treated as a regular expression and the stored 
data will be matched against it using regular expression rules.
84 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Current Reports
Example Using 1-Level Segmentation by string, stringArray, and regex Values
{

"level1": {
"property": "prodVersion",
"segments": [

{
"type": "string",
"value": "1.0"

},
{

"type": "stringArray",
"value": ["2.0", "2.1", "3.1"],
"split": false,
"segmentLabel": "Versions 2 and 3"

},
{

"type": "regex",
"value": "^4\..*",
"split": false,
"segmentLabel": "All version 4"

},
{

"type": "regex",
"value": "^5\..*",
"split": true

}
]

}
}

In the above example, we are requesting a report with multiple segments. The first segment contains installations running 
version 1.0. Notice how this does not require a "split" property since there is only 1 value and therefore no further splitting 
is possible. The second segment contains versions 2.0, 2.1 and 3.1. In this case, the "split" property is required, and since 
we are requesting the API to combine these 3 versions, we must provide a "segmentLabel" value so that the returned data 
can be identified. The third segment is similar, although in this case the request is built using a regular expression. In this 
case, all versions starting with "4." are to be included into one combined segment.

The last segment is different from the rest because we are requesting the API to split the data (split is set to true). 
Therefore, this can produce much more than 1 segment. In this case, we could see segments such as "5.1", "5.2", etc. 
Notice how since we are splitting, we should not provide a segmentLabel value since the labels are built using the different 
values that are found in the data.

Numeric Segmentation Properties
The following properties are stored as numeric values:

cpuCores
displayCount
ram
resolutionWidth
resolutionHeight
lifetimeRuntimeMinutes
lifetimeSessionCount
screenPpi
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 85



Chapter 8 Generic Reports
Generic Current Reports
javaVmRam

The type field in the above properties needs to be number or numberRange. If number is specified, then a value field must 
also be present. The value field should contain a number, which may contain a decimal point if required. If numberRange is 
specified, then the value field should NOT be used. Instead, the properties min and max are to be used. These refer to the 
minimum and maximum number to be included in the report. If only one limit needs to be set, the other property is to be 
left out. Therefore, if you want to include installations with up to 2 display devices, you would not specify a min value, but 
instead specify only a max and set it as 2.

Example Using 1-Level Segmentation by number, and numberRange Values
{

"level1": {
"property": "cpuCores",
"segments": [

{
"type": "number",
"value": 1,

},
{

"type": "numberRange",
"min": 2,
"max": 4,
"segmentLabel": "2 - 4"

},
{

"type": "numberRange",
"min": 5,
"segmentLabel": "5 +"

}
]

}
}

In the above example, we are requesting a report with 3 segments. The first segment contains only installations running on 
1 CPU core, the second segments contains installations running on 2, 3, or 4 cores (range 2 - 4), while the last segment 
contains all installations which are running on a machine with 5 or more CPU cores. Note how when the type was 
numberRange, we had do specify a segmentLabel which is a free string that will be used by the user to identify what is being 
included in that specific segment.

Boolean Segmentation Properties
The following properties are stored ad boolean values:

touchScreen

The type field needs to be boolean, and the value must be true or false. A segmentLabel field is also required

Example Using 1-Level Segmentation by Boolean Value
{

"level1": {
"property": "touchScreen",
"segments": [

{

86 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Current Reports
"type": "boolean",
"value": true,
"segmentLabel": "Yes"

},
{

"type": "boolean",
"value": false,
"segmentLabel": "No"

},
{

"includeNull": true,
"segmentLabel": "Unknown"

}
]

}
}

In the above example, we are requesting a report with 3 segments. The first segment contains installations on which a 
touch screen was detected, the second one where no touch screen has been detected, while the last one is where we could 
not detect whether a touch screen is present due to the client using an old SDK which did not have touch screen detection 
support.

Special Segmentation Properties
Some properties need to be represented in a special format due to their unique requirements. These special properties are:

licenseStatus
os
geography
gpu
optOut and backOff

For more information, see:

• Special Segmentation Format: licenseStatus

• Special Segmentation Format: os

• Special Segmentation Format: geography

• Special Segmentation Format: gpu

• Special Segmentation Format: optOut and backOff

Special Segmentation Format: licenseStatus
The licenseStatus value is made up of 4 sub-values: activated, blocked, expired and allowed. These are presented as 
boolean values. Any number of segments can be defined, and each segment can contain any subset of the 4 sub-values. 
These values are ANDed together. A segmentLabel value is required.

In the following example, 2 segments are specified - the first one showing blocked AND not expired and the second one 
showing allowed AND activated:

[
{

"segmentLabel": "BL and not EXP",
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 87



Chapter 8 Generic Reports
Generic Current Reports
"blocked": true,
"expired": false

},
{

"segmentLabel": "WL and ACT",
"allowed": true,
"expired": true

}
]

Special Segmentation Format: os
The os value is made up of 3 granularity levels - platform, version, and edition. A particular level needs to be selected, 
and this is to be included in the property name such as os.version or os.edition. Different granularity levels can be 
requested for different segmentation levels. Therefore, it is possible to generate a 3-level hierarchical tree in which level 1 
would show the OS platform, level 2 would show the version, and level 3 would show the full name including the OS edition 
or sub-version. For a description of the differences between the 3 granularity levels, refer to the os special filter section.

The following example shows the levels object requesting 3 granularity levels as described above:

{
"level1": {

"property": "os.platform",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

},
"level2": {

"property": "os.version",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

},
"level3": {

"property": "os.edition",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

}
}

In the above example, no filtering is being done, and instead, a regular expression to include everything is set as the value. 
This will result in all OS platforms, versions, and editions to be included in the hierarchy.
88 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Current Reports
Special Segmentation Format: geography
The geography value is made up of 3 granularity levels - continent, country, and usState. These granularity levels are 
explained in Special Filter: geography. A particular level needs to be selected, and this is to be included in the property 
name such as geography.continent or geography.country. Different granularity levels can be requested for different 
segmentation levels. Therefore, it is possible to generate a 3-level hierarchical tree in which level 1 would show the 
continent, level 2 would show the country, and level 3 would show the US state (for United States only).

The following example shows the levels object requesting 3 granularity levels as described above:

{
"level1": {

"property": "geography.continent",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

},
"level2": {

"property": "geography.country",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

},
"level3": {

"property": "geography.usState",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

}
}

In the above example, no filtering is being done, and instead, a regular expression to include everything is set as the value. 
This will result in all the continents, countries and US states (where applicable) to be included in the hierarchy.

Special Segmentation Format: gpu
The gpu value is made up of 2 granularity levels - vendor and model. These granularity levels are explained in Special Filter: 
gpu. A particular level needs to be selected, and this is to be included in the property name, namely gpu.vendor or 
gpu.model. Different granularity levels can be requested for different segmentation levels. Therefore, it is possible to 
generate a 2-level hierarchical tree in which level 1 would show the vendor, and level 2 would show the model number.

The following example shows the levels object requesting 2 granularity levels as described above:
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 89



Chapter 8 Generic Reports
Generic Current Reports
{
"level1": {

"property": "gpu.vendor",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

},
"level2": {

"property": "gpu.model",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

}
}

In the above example, no filtering is being done, and instead, a regular expression to include everything is set as the value. 
This will result in all the GPU vendors and models to be included in the hierarchy.

Special Segmentation Format: optOut and backOff
Both backOff and optOut values are made up of 2 boolean sub-values: historical and current. Any number of segments 
can be defined, and each segment can contain any subset of the 2 sub-values. These values are ANDed together. A 
segmentLabel value is required.

In the following example, 2 segments are specified - the first one showing historical AND not current and the second one 
showing not historical (i.e. never opted-out):

[
{

"segmentLabel": "HISTORICAL and not CURRENT",
"historical": true,
"current": false

},
{

"segmentLabel": "Never opted-out",
"historical": false

}
]

<NULL> Values in Segmentation and Levels (Current Reports)
Null values in segmentation are to be requested in a similar way to null values in filters, as described in <NULL> Values in 
Global Filters (Current Reports). The same properties that support null in filtering also support null in segmentation.
90 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Current Reports
By default, when segmenting, null values are not included within the segments, since only the values that have been 
specified in each segment are included. Null values don't match any regular expression, so the only way to request null 
values to be included is to specify "includeNull" as true in a similar way to filtering. In segmentation, null values are 
returned as "<NULL>". The API considers all cases where the data has never been set from the SDK, set as an empty string, 
or set as a string containing "<NULL>" to be the same.

The following example requests all values of prodBuild including null:

{
"level1": {

"property": "prodBuild",
"segments": [

{
"type": "regex",
"value": ".*",
"includeNull": true

}
]

}
}

In the case of segmentation properties that use sub-properties (os, geography, and gpu), the includeNull value is to be 
included in the sub-property and applies to that specific sub-property only. In order to be able to include the includeNull 
property, instead of providing the value as a string or an array of strings, the value of the sub-property must be a JSON 
object that contains a property named "value", and another named "includeNull". Each of these properties is optional, but 
at least one of them must be present. The same rules that apply for filtering these types of properties for null values also 
apply to segmentation.

In the following example, we are requesting segmentation by continent and are also requesting the number of clients 
where we could not detect the geographical location:

{
"level1": {

"property": "geography",
"segments": [

{
"type": "regex",
"continent": {

 "value": ".*",
 "includeNull": true

 }
}

]
}

}

Results Format
The results object contains a hierarchy of sub-objects depending on how many segmentation levels were requested. 

If at least 1 level was requested, the results object will contain only 1 member named level1. The value of level1 is a JSON 
object with a member for each segment of level 1. Therefore, assuming the level 1 property is prodVersion, the keys 
contain product versions or the segment labels that were specified. The value for each of these members will be an object 
containing an object named totals and if 2 or more levels were requested, another object named level2. 
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 91



Chapter 8 Generic Reports
Generic Current Reports
The totals object will contain up to 3 members - new, active, and lost, based on what was specified in the clientStatus 
property in the request. If the level2 object is present, it will be in the same format as level1. Similarly, the level2 object 
may contain an object named level3. 

Refer to the following example for a sample request and response.

• Full Example Request/Response of Daily Timeline Report with Segmentation

• Results Format for Reports with No Segmentation Levels

Full Example Request/Response of Daily Timeline Report with Segmentation
The following example request and response show a report with the data being segmented by selected product versions in 
level 1 and all product editions in level 2. In level 1, product versions 1 and 1.5 are being combined into a single segment, 
while product version 2 is in a segment on its own. In level 2, each known product edition will be shown in a segment on its 
own.

Example Request
POST /reporting/generic/current HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 12345678901,
"startDate": "2018-08-01",
"clientStatus": [

"new",
"active",
"lost"

],
"daysUntilDeclaredLost": 30,
"dateReportedLost": "dateDeclaredLost",
"globalFilters": {

"prodLanguage": {
"type": "stringList",
"value": ["English", "French"]

},
"ram": {

"type": "numberRange",
"min": 512

},
"os": {

"type": "string",
"version": "Microsoft Windows 7"

}
},
"levels": {

"level1": {
"property": "prodVersion",
"segments": [

{

92 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Current Reports
"type": "stringArray",
"value": [

"1",
"1.5"

],
"segmentLabel": "1 and 1.5",
"split": false

},
{

"type": "string",
"value": "2"

}
]

},
"level2": {

"property": "prodEdition",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

}
}

}

Example Server Response
HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "OK",
"levelLabels": {

"level1": "prodVersion",
"level2": "prodEdition"

},
"results": {

"level1": {
"2": {

"totals": {
"new": 40,
"active": 138,
"lost": 0

},
"level2": {

"Lite": {
"totals": {

"new": 5,
"active": 30,
"lost": 0

}
},
"Premium": {

"total": {
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 93



Chapter 8 Generic Reports
Generic Current Reports
"new": 5,
"active": 17,
"lost": 0

}
},
"Standard": {

"totals": {
"new": 30,
"active": 91,
"lost": 0

}
}

}
},
"1 and 1.5": {

"totals": {
"new": 0,
"active": 174,
"lost": 10

},
"level2": {

"Lite": {
"total": {

"new": 0,
"active": 48,
"lost": 5

}
},
"Premium": {

"totals": {
"new": 0,
"active": 13,
"lost": 1

}
},
"Standard": {

"totals": {
"new": 0,
"active": 113,
"lost": 4

}
}

}
}

}
}

}

Results Format for Reports with No Segmentation Levels
If no segmentation levels are specified, the results object will be a simple JSON object with up to 3 members - new, active, 
and lost, depending on what was requested in the clientStatus property in the request. The following is an example of a 
complete response:

{

94 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 8 Generic Reports
Generic Current Reports
"status": "OK",
"results": {

"active": 1734,
"new": 729,
"lost": 387

}
}

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 95



Chapter 8 Generic Reports
Generic Current Reports
96 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



9

User Engagement Histograms
The User Engagement Histogram Report consists of 3 histograms which show the following metrics:

• Active Days—The number of days clients were active within the specified date range

• Sessions—The number of times users launched your application

• Runtime—The total amount of time in hours users spent interacting with your application

For more information see:

• Request/Response Parameters Summary

• Global Filters

• Results Format

Request/Response Parameters Summary
POST /reporting/engagement/usageDistribution
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 97



Chapter 9 User Engagement Histograms
Global Filters
The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Global Filters
Most of the available filter properties are string-based. This means that when applying a filter, the requested field can be 
represented as a string, stringArray or regex. There are also some filters which are numeric. These filters should be 
represented as number or numberRange.

• String-Based Filters

• Numeric Filters

• Date Range Filters

• Boolean Filters

• Special Filters

• <NULL> Values in Global Filters

String-Based Filters
The following properties are stored as strings:

machineId *
clientId *
prodVersion
prodEdition
prodBuild

Table 9-1 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. Required 
only for non-cookie authentication.

• sessionId (string)—The sessionId obtained via POST /auth/login. Required only 
for non-cookie authentication.

• productId (integer)—The product ID on which this request is being done

• startDate (string)—The first date of the date range on which to base the report. 
This is to be formatted as YYYY-MM-DD.

• globalFilters (object)—JSON object containing the filters to be applied to the 
available data. Details about these filters can be found in the Global Filters section.

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• results (object)—Contains the results as requested represented as a JSON object. 
The result format is described below.
98 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 9 User Engagement Histograms
Global Filters
prodLanguage
licenseType
formFactor *
osLanguage
osWordLength *
cpuType *
dotNetVersion *
javaVersion *
javaVendor *
javaRuntime *
javaGraphics *
javaVmVersion *
javaVmName *
vm *
C01 .. C20 (Custom properties)
licenseKey *

Note • licenseKey requires a special user permission to be used as a filter.

Note • Properties marked with an asterisk (*) are based on the current (latest known) values.

The type field in the above filters needs to be string, stringArray or regex. A value field is always required. The contents 
of this field should be according to the specified type. 

• If string is specified, then the value field must contain a single string that needs to be matched precisely with the 
stored data. 

• If stringArray is specified, then the value field must contain an array of strings where one of which needs to match 
precisely with the stored data. 

• If specifying a regex, the value field should contain a string which is treated as a regular expression and the stored 
data will be matched against it using regular expression rules.

Example Filter Using a String Value

In this example, the product build value needs to be exactly “3014.int-12214”:

{
"prodBuild":

{
"type": "string",
"value": "3014.int-12214"

}
}

Example Filter Using a String Array

In this example, the product build value needs to be either “3014.int-12214”, “3017.enx-57718”, or “4180.vrx-81059”. Note 
that since the type is declared as stringArray, the value field needs to contain an array. Consider all elements in the array to 
have an OR logical expression between them.:

{
"prodBuild":
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 99



Chapter 9 User Engagement Histograms
Global Filters
{
"type": "stringArray",
"value": ["3014.int-12214", "3017.enx-57718", "4180.vrx-81059"]

}
}

Example Filter Using a Regular Expression

In this example, the product build value needs to start with “30” and end with “18” whilst having 10 characters in between:

{
 "prodBuild":

 {
 "type": "regex",
 "value": "^30.{10}18$"

 }
}

Numeric Filters
The following properties are stored as numeric values:

cpuCores *
displayCount *
ram *
resolutionWidth *
resolutionHeight *
lifetimeRuntimeMinutes *
lifetimeSessionCount *
screenPpi *
javaVmRam *

Note • Properties marked with an asterisk (*) are based on the current (latest known) values.

The type field in the above filters needs to be number or numberRange. 

• If number is specified, then a value field must also be present. The value field should contain a number, which may 
contain a decimal point if required. 

• If numberRange is specified, then the value field should NOT be used. Instead, the properties min and max are to be 
used. These refer to the minimum and maximum number to be included in the report. If only one limit needs to be set, 
the other property is to be left out. Therefore, if you want to include installations with up to 2 display devices, you 
would not specify a min value, but instead specify only a max and set it as 2.

Example Filter Using a Number Value

In this example, the number of display devices needs to be exactly 3:

{
"displayCount":

{
"type": "number",
"value": 3

}

100 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 9 User Engagement Histograms
Global Filters
}

Example Filter Using a Number Range Value

In this example, the RAM needs to be between 1025MB and 4096MB (both included):

{
"ram":

{
"type": "numberRange",
"min": 1025,
"max": 4096

}
}

Date Range Filters
The following properties are stored as dates:

dateInstalled
dateLastSeen

The type field in the above filters needs to be date or dateRange. 

• If date is specified, then a value field must also be present. The value field should contain a date. 

• If dateRange is specified, then the value field should NOT be used. Instead, the properties min and max are to be used. 
These refer to the minimum and maximum dates to be included in the report. If only one limit needs to be set, the 
other property is to be left out. 

In the following example, users installed after January 1st 2018 are to be shown:

{
 "dateInstalled":

 {
 "type": "dateRange", 
"min": "2018-01-01"

 }
}

Note • All dates must be in ISO 8601 format.

Boolean Filters
The following property is stored as boolean:

touchScreen

The type field in the above filters needs to be boolean. The value must be true or false. In the following filter, clients with a 
touch screen are being requested.

{
"touchScreen":

{

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 101



Chapter 9 User Engagement Histograms
Global Filters
"type": "boolean",
"value": true

}
}

Special Filters
Some filters need to be represented in a special format due to their unique requirements. These special filters are:

• Special Filter: licenseStatus

• Special Filter: os

• Special Filter: geography

• Special Filter: gpu

• Special Filters: optOut and backOff

• Special Filter: lifetimeEventUsage

• Special Filter: reachOutDeliveries

Special Filter: licenseStatus
The licenseStatus filter is made up of 4 sub-values: activated, blocked, expired and allowed. These are presented as 
boolean values. 

Unlike other filters, this filter is presented as an array of JSON objects. Each object can contain a subset (or all) of these 4 
boolean values. 

Consider the following example. In this example, for a client to be included, the license has to either be activated AND 
allowed, or else it can be not allowed AND expired. In other words, ( (activated AND allowed) OR ((NOT)allowed AND 
expired) ).

{
"licenseStatus":

[
{

"activated": true,
"allowed": true

},
{

"allowed": false,
"expired": true

}
]

}

Special Filter: os
The os filter is made up of 3 granularity levels. These are platform, version, and edition. These are meant to split the OS 
name into levels of detail as required by the user. Consider the following:

• platform: Microsoft Windows
102 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 9 User Engagement Histograms
Global Filters
• version: Microsoft Windows 7

• edition: Microsoft Windows 7 Professional

If a filter is set on the version “Microsoft Windows 7”, the result would include all editions of Windows 7. One or more of 
these granularity levels may be specified. If more than 1 granularity level is specified, the values are ORed together.

In the following example, all editions of “Microsoft Windows 7” are included, and also “Microsoft Windows Vista Home 
Premium”:

{
"type": "string",
"version": "Microsoft Windows 7",
"edition": "Microsoft Windows Vista Home Premium"

}

In the following example, the type is stringArray. Note that an array needs to be passed if the type is set as such, even if it 
is to contain only 1 element. In this case, the version can be either “Microsoft Windows 7” or “Microsoft Windows 8” (which 
are ORed together). Also, clients running on “Microsoft Windows XP Professional” are to be included.

{
"type": "stringArray",
"version": ["Microsoft Windows 7", "Microsoft Windows 8"],
"edition": ["Microsoft Windows XP Professional"]

}

Special Filter: geography
The geography filter is made up of 3 granularity levels. These are continent, country, and usState. The usState value applies 
only to United States. Continents and countries are presented in 2-letter codes. Countries follow ISO standard 3166-1 
alpha-2. US states are presented in ISO 3166-2:US format.

In the following example, the clients have to be either:

• In the continents Asia or Oceania

• In the country Germany

• In the US states New York, New Jersey, or Kansas

{
"type": "stringArray",
"continent": ["AS", "OC"],
"country": ["DE"],
"usState": ["US-NY", "US-NJ", "US-KS"]

}

Important • In this filter, the type can be string or stringArray. Regular expressions are not supported in geography filters.

Special Filter: gpu
The gpu filter is made up of 2 granularity levels. These are vendor and model. Both are represented as string values.

In the following example, the clients have to have a GPU:
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 103



Chapter 9 User Engagement Histograms
Global Filters
• From the vendors NVIDIA or Intel

• With the model AMD Radeon HD 4600

{
"type": "stringArray",
"vendor": ["NVIDIA", "Intel"],
"model": ["AMD Radeon HD 4600"]

}

Special Filters: optOut and backOff
The opt-out mechanism was introduced in SDK version 5.1.0. With this feature, vendors can have their application report to 
the Usage Intelligence servers that a user does not want to be tracked. Using this property, vendors can filter out 
installations that were opted-out. 

Similarly, backoff filtering was introduced with version 5.0.0. Backoff is when a product account runs over-quota and the 
server starts rejecting data. Although filtering for backed-off installations was introduced with version 5, it was also 
backported to previous versions. However, when a new installation with an SDK prior to version 5 tries to register with the 
server and is rejected, it is not marked as being once backed-off when it is eventually accepted by the server. With version 5 
onwards, the server flags an installation as being historically backed-off in such cases.

Both backOff and optOut filters are made up of 2 boolean sub-values: historical and current. 

• The historical value refers to installations that were once backed-off or opted-out. These may include installations 
that are still currently backed-off or opted-out. 

• The current value refers to the status during the last time that the client called the server. Therefore, if an installation 
was opted-out yesterday but got opted-in today, it will be marked as historically opted-out but not currently opted-
out.

In the following example, for a client to be included, the optOut status has to either be historical AND not current, or 
else it can be not historical (i.e. users have to be currently opted-in but used to be opted-out at some point or never 
opted out).

{
"optOut":

[
{

"historical": true,
"current": false

},
{

"historical": false
}

]
}

Special Filter: lifetimeEventUsage
Using lifetime event usage filters, clients can be filtered based on whether a particular event or set of events occurred or 
not within the client’s lifetime. Alternatively, one can set a filter based on the number of times an event has occurred.
104 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 9 User Engagement Histograms
Global Filters
In the following example, clients that are included must have done the “File Operations - Open” event at least 5 times to be 
counted.

{
 "category": "File Operations",
 "name": "Open",
 "min": 5

}

In the following example, clients must have done either “File Operations - Open” or “File Operations - Save” for a combined 
total of between 10 to 50 times.

{
"combiArray": [

 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Open"

 },
 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Save",

 }
],

"min": 10,
"max": 50

}

In the following example, clients must have done any event within the “File Operations” category for a combined total of 
not more than 100 times. This is done using a regular expression in the name.

{
"combiArray": [

{
"categoryType": "string",
"nameType": "regex",
"category": "File Operations",
"name": ".*"

}
 ],

"max": 100
}

Special Filter: reachOutDeliveries
Using ReachOut delivery filters, clients can be filtered based on whether a particular ReachOut message or a combination 
of ReachOut messages were delivered or not within the client’s lifetime.

The filter consists of a JSON array that includes one or more objects. Each object is a combination of delivered and 
undelivered campaigns, and the different combinations are ORed together. Therefore, it is possible to show users that 
either received ReachOut message 1 but not 2, or else received 3 but not 4 as in the following example:
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 105



Chapter 9 User Engagement Histograms
Global Filters
In the following example, we are looking for clients who either received campaign 1 but not 2, OR received campaign 2 but 
not 3.

[
 {"auto": {"delivered": ["1"], "undelivered":["2"]}},
 {"auto": {"delivered": ["2"], "undelivered":["3"]}}

]

The above example contains only “auto” ReachOut campaigns. Manual campaigns can be specified using “manual” 
instead of “auto” as in the above example. Each object can contain a mix of “auto” and “manual” campaigns.

<NULL> Values in Global Filters
Most of the available properties can include null values. There are different reasons why a value would be null. When these 
are properties that are set by the application, the possible reasons why a value would be null are cases where the value has 
not been set by the application (such as prodBuild never being set), and cases where values are set to an empty string (“”) 
or to a string containing “<NULL>”. 

One other reason is that although these values have been set, the SDK has not yet had time to sync with the servers to 
provide this new information. In cases where the properties are set automatically such as hardware or OS related 
information, the values would be null if the SDK failed to retrieve that value from the OS or if the server failed to identify the 
value retrieved by the SDK. 

Other reasons include cases where Java version is requested from an application that does not use the Java SDK, US state 
is requested for users who are not running within the US, etc.

The following are the properties that support null values:

prodVersion
prodEdition
prodBuild
prodLanguage
machineId
formFactor
vm
cpuType
cpuCores
ram
resolutionWidth
resolutionHeight
javaVersion
javaVmVersion
javaVmName
javaVendor
javaRuntime
javaGraphics
osLanguage
licenseKey
C01 .. C20 (Custom properties)
os
geography
gpu

Null values can be requested either on their own or as part of a filter containing other values.

The following example would return only cases where the prodVersion is null:
106 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 9 User Engagement Histograms
Global Filters
{
"prodVersion":

{
"includeNull": true

}
}

The following example would return cases where the prodVersion is either 1.1, 1.2 or null:

{
"prodVersion":

{
"type": "stringArray",
"value": ["1.1", "1.2"],
"includeNull": true

}
}

By default, when specifying a filter, null values would not be included. Therefore, in the following example, only clients 
with prodVersion set to 1.1 or 1.2 will be included, while null values are excluded:

{
"prodVersion":

{
"type": "stringArray",
"value": ["1.1", "1.2"]

}
}

However, if no filter is specified, then nulls are included by default. Therefore, if you want to include any value of 
prodVersion as long as it is not null, a prodVersion filter needs to be included as follows:

{
"prodVersion":

{
"type": "regex",
"value": ".*",
"includeNull": false

}
}

In the case of filters that use sub-properties (os, geography, and gpu), the includeNull filter is to be included in the sub-
property and applies to that specific sub-property only. In order to be able to include the includeNull property, instead of 
providing the value as a string or an array of strings, the value of the sub-property must be a JSON object that contains a 
property named “value”, and another named “includeNull”. Each of these properties is optional, but at least one of them 
must be present.

In the case of geography, this has a very particular meaning. Requesting for null “country” value does not return all cases 
where the country could not be retrieved, but only cases where the continent could be retrieved but the country could not. 
Similarly, requesting null “usState” returns cases where the continent and country could be retrieved but the US state 
could not. This does not include clients that are not situated in the US. If you are interested in finding clients where we 
could not detect any geographical data, the includeNull filter needs to be applied in the continent sub-property.

In the following example, we are requesting cases where we know that the client is within the US but the state could not be 
identified:

{
"geography":
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 107



Chapter 9 User Engagement Histograms
Results Format
{
"type": "string",
"country": "US",
"usState":

{
"includeNull": true

}
}

}

In the following example, we are requesting cases where the GPU is either “NVIDIA”, “AMD” or null (unidentified):

{
"gpu":

{
"type": "stringArray",
"vendor":

{
"value": ["NVIDIA", "AMD"],
"includeNull": true

}
}

}

Results Format
The results object consist of 3 properties each containing an object. These properties are activeDays, sessions, and 
runtime. Each one of these properties contains histogram data for the number of active days per client, number of 
sessions, and total runtime hours, all within the selected date range.

Example Request
POST /reporting/engagement/usageDistribution HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 12345678901,
"startDate": "2018-05-01",
"stopDate": "2018-06-30"

}

Example Response
HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "OK",
"results": {

"activeDays": {
"1": {
108 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 9 User Engagement Histograms
Results Format
"users": 152,
"sessions": {

"\u2264 1": 35,
"2": 34,
"3": 43,
"4 - 5": 16,
"6 - 8": 16,
"9 - 12": 8,
"\u2265 13": 0

},
"runtime": {

"\u2264 0:05": 0,
"0:06 - 0:15": 4,
"0:16 - 0:30": 148,
"\u2265 0:31": 0

}
},
"2": {

"users": 180,
"sessions": {

"\u2264 1": 2,
"2": 15,
"3": 19,
"4 - 5": 70,
"6 - 8": 36,
"9 - 12": 23,
"13 - 20": 15,
"\u2265 21": 0

},
"runtime": {

"\u2264 0:15": 0,
"0:16 - 0:30": 12,
"0:31 - 0:45": 20,
"0:46 - 1:00": 148,
"\u2265 1:01": 0

}
},
"3": {

"users": 160,
"sessions": {

"\u2264 2": 0,
"3": 4,
"4 - 5": 31,
"6 - 8": 58,
"9 - 12": 22,
"13 - 20": 39,
"21 - 30": 6,
"\u2265 31": 0

},
"runtime": {

"\u2264 0:45": 0,
"0:46 - 1:00": 15,
"1:01 - 1:30": 145,
"\u2265 1:31": 0

}
},
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 109



Chapter 9 User Engagement Histograms
Results Format
"4": {
"users": 154,
"sessions": {

"\u2264 3": 0,
"4 - 5": 4,
"6 - 8": 44,
"9 - 12": 56,
"13 - 20": 28,
"21 - 30": 21,
"31 - 50": 1,
"\u2265 51": 0

},
"runtime": {

"\u2264 0:45": 0,
"0:46 - 1:00": 5,
"1:01 - 1:30": 32,
"1:31 - 2:00": 117,
"\u2265 2:01": 0

}
},
"5": {

"users": 152,
"sessions": {

"\u2264 5": 0,
"6 - 8": 13,
"9 - 12": 63,
"13 - 20": 37,
"21 - 30": 29,
"31 - 50": 10,
"\u2265 51": 0

},
"runtime": {

"\u2264 1:00": 0,
"1:01 - 1:30": 2,
"1:31 - 2:00": 150,
"\u2265 2:01": 0

}
},
"6": {

"users": 168,
"sessions": {

"\u2264 5": 0,
"6 - 8": 4,
"9 - 12": 52,
"13 - 20": 42,
"21 - 30": 44,
"31 - 50": 26,
"\u2265 51": 0

},
"runtime": {

"\u2264 1:30": 0,
"1:31 - 2:00": 9,
"2:01 - 3:00": 159,
"\u2265 3:01": 0

}
},
110 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 9 User Engagement Histograms
Results Format
"7 - 9": {
"users": 419,
"sessions": {

"\u2264 8": 0,
"9 - 12": 26,
"13 - 20": 191,
"21 - 30": 51,
"31 - 50": 131,
"51 - 75": 20,
"\u2265 76": 0

},
"runtime": {

"\u2264 1:30": 0,
"1:31 - 2:00": 1,
"2:01 - 3:00": 168,
"3:01 - 4:00": 250,
"\u2265 4:01": 0

}
},
"10 - 14": {

"users": 604,
"sessions": {

"\u2264 12": 0,
"13 - 20": 65,
"21 - 30": 216,
"31 - 50": 127,
"51 - 75": 171,
"76 - 100": 25,
"\u2265 101": 0

},
"runtime": {

"\u2264 2:00": 0,
"2:01 - 3:00": 2,
"3:01 - 4:00": 150,
"4:01 - 6:00": 452,
"\u2265 6:01": 0

}
},
"15 - 19": {

"users": 464,
"sessions": {

"\u2264 20": 0,
"21 - 30": 41,
"31 - 50": 173,
"51 - 75": 91,
"76 - 100": 136,
"101 - 150": 23,
"\u2265 151": 0

},
"runtime": {

"\u2264 4:00": 0,
"4:01 - 6:00": 157,
"6:01 - 9:00": 307,
"\u2265 9:01": 0

}
},
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 111



Chapter 9 User Engagement Histograms
Results Format
"20 - 24": {
"users": 426,
"sessions": {

"\u2264 30": 0,
"31 - 50": 118,
"51 - 75": 60,
"76 - 100": 90,
"101 - 150": 158,
"\u2265 151": 0

},
"runtime": {

"\u2264 6:00": 0,
"6:01 - 9:00": 336,
"9:01 - 15:00": 90,
"\u2265 15:01": 0

}
},
"25 - 29": {

"users": 384,
"sessions": {

"\u2264 30": 0,
"31 - 50": 34,
"51 - 75": 123,
"76 - 100": 34,
"101 - 150": 168,
"151 - 250": 25,
"\u2265 251": 0

},
"runtime": {

"\u2264 6:00": 0,
"6:01 - 9:00": 24,
"9:01 - 15:00": 360,
"\u2265 15:01": 0

}
},
"30 - 44": {

"users": 811,
"sessions": {

"\u2264 30": 0,
"31 - 50": 1,
"51 - 75": 152,
"76 - 100": 120,
"101 - 150": 165,
"151 - 250": 368,
"251 - 500": 5,
"\u2265 501": 0

},
"runtime": {

"\u2264 9:00": 0,
"9:01 - 15:00": 581,
"15:01 - 24:00": 230,
"\u2265 24:01": 0

}
},
"45 - 59": {

"users": 388,
112 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 9 User Engagement Histograms
Results Format
"sessions": {
"\u2264 75": 0,
"76 - 100": 32,
"101 - 150": 89,
"151 - 250": 129,
"251 - 500": 138,
"\u2265 501": 0

},
"runtime": {

"\u2264 9:00": 0,
"9:01 - 15:00": 1,
"15:01 - 24:00": 387,
"\u2265 24:01": 0

}
},
"60 - 89": {

"users": 329,
"sessions": {

"\u2264 100": 0,
"101 - 150": 55,
"151 - 250": 80,
"251 - 500": 193,
"\u2265 501": 1

},
"runtime": {

"\u2264 15:00": 0,
"15:01 - 24:00": 70,
"24:01 - 48:00": 259,
"\u2265 48:01": 0

}
},
"90 - 119": {

"users": 179,
"sessions": {

"\u2264 150": 0,
"151 - 250": 21,
"251 - 500": 97,
"\u2265 501": 61

},
"runtime": {

"\u2264 24:00": 0,
"24:01 - 48:00": 179,
"\u2265 48:01": 0

}
},
"120 - 179": {

"users": 101,
"sessions": {

"\u2264 250": 0,
"251 - 500": 18,
"\u2265 501": 83

},
"runtime": {

"\u2264 24:00": 0,
"24:01 - 48:00": 12,
"48:01 - 96:00": 89,
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 113



Chapter 9 User Engagement Histograms
Results Format
"\u2265 96:01": 0
}

},
"\u2265 180": {

"users": 0,
"sessions": {},
"runtime": {}

}
},
"sessions": {

"\u2264 1": {
"users": 37,
"activeDays": {

"1": 35,
"2": 2,
"\u2265 3": 0

},
"runtime": {

"\u2264 0:05": 0,
"0:06 - 0:15": 1,
"0:16 - 0:30": 36,
"\u2265 0:31": 0

}
},
"2": {

"users": 49,
"activeDays": {

"1": 34,
"2": 15,
"\u2265 3": 0

},
"runtime": {

"\u2264 0:05": 0,
"0:06 - 0:15": 2,
"0:16 - 0:30": 33,
"0:31 - 0:45": 5,
"0:46 - 1:00": 9,
"\u2265 1:01": 0

}
},
"3": {

"users": 66,
"activeDays": {

"1": 43,
"2": 19,
"3": 4,
"\u2265 4": 0

},
"runtime": {

"\u2264 0:05": 0,
"0:06 - 0:15": 1,
"0:16 - 0:30": 44,
"0:31 - 0:45": 1,
"0:46 - 1:00": 17,
"1:01 - 1:30": 3,
"\u2265 1:31": 0
114 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 9 User Engagement Histograms
Results Format
}
},
"4 - 5": {

"users": 121,
"activeDays": {

"1": 16,
"2": 70,
"3": 31,
"4": 4,
"\u2265 5": 0

},
"runtime": {

"\u2264 0:15": 0,
"0:16 - 0:30": 19,
"0:31 - 0:45": 8,
"0:46 - 1:00": 61,
"1:01 - 1:30": 30,
"1:31 - 2:00": 3,
"\u2265 2:01": 0

}
},
"6 - 8": {

"users": 171,
"activeDays": {

"1": 16,
"2": 36,
"3": 58,
"4": 44,
"5": 13,
"6": 4,
"\u2265 7": 0

},
"runtime": {

"\u2264 0:15": 0,
"0:16 - 0:30": 18,
"0:31 - 0:45": 3,
"0:46 - 1:00": 41,
"1:01 - 1:30": 60,
"1:31 - 2:00": 45,
"2:01 - 3:00": 4,
"\u2265 3:01": 0

}
},
"9 - 12": {

"users": 250,
"activeDays": {

"1": 8,
"2": 23,
"3": 22,
"4": 56,
"5": 63,
"6": 52,
"7 - 9": 26,
"\u2265 10": 0

},
"runtime": {
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 115



Chapter 9 User Engagement Histograms
Results Format
"\u2264 0:15": 0,
"0:16 - 0:30": 10,
"0:31 - 0:45": 3,
"0:46 - 1:00": 22,
"1:01 - 1:30": 35,
"1:31 - 2:00": 105,
"2:01 - 3:00": 73,
"3:01 - 4:00": 2,
"\u2265 4:01": 0

}
},
"13 - 20": {

"users": 417,
"activeDays": {

"1": 0,
"2": 15,
"3": 39,
"4": 28,
"5": 37,
"6": 42,
"7 - 9": 191,
"10 - 14": 65,
"\u2265 15": 0

},
"runtime": {

"\u2264 0:45": 0,
"0:46 - 1:00": 18,
"1:01 - 1:30": 42,
"1:31 - 2:00": 61,
"2:01 - 3:00": 122,
"3:01 - 4:00": 154,
"4:01 - 6:00": 20,
"\u2265 6:01": 0

}
},
"21 - 30": {

"users": 408,
"activeDays": {

"1 - 2": 0,
"3": 6,
"4": 21,
"5": 29,
"6": 44,
"7 - 9": 51,
"10 - 14": 216,
"15 - 19": 41,
"\u2265 20": 0

},
"runtime": {

"\u2264 1:00": 0,
"1:01 - 1:30": 9,
"1:31 - 2:00": 51,
"2:01 - 3:00": 60,
"3:01 - 4:00": 74,
"4:01 - 6:00": 203,
"6:01 - 9:00": 11,
116 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 9 User Engagement Histograms
Results Format
"\u2265 9:01": 0
}

},
"31 - 50": {

"users": 621,
"activeDays": {

"1 - 3": 0,
"4": 1,
"5": 10,
"6": 26,
"7 - 9": 131,
"10 - 14": 127,
"15 - 19": 173,
"20 - 24": 118,
"25 - 29": 34,
"30 - 44": 1,
"\u2265 45": 0

},
"runtime": {

"\u2264 1:30": 0,
"1:31 - 2:00": 12,
"2:01 - 3:00": 70,
"3:01 - 4:00": 116,
"4:01 - 6:00": 160,
"6:01 - 9:00": 230,
"9:01 - 15:00": 33,
"\u2265 15:01": 0

}
},
"51 - 75": {

"users": 617,
"activeDays": {

"1 - 6": 0,
"7 - 9": 20,
"10 - 14": 171,
"15 - 19": 91,
"20 - 24": 60,
"25 - 29": 123,
"30 - 44": 152,
"\u2265 45": 0

},
"runtime": {

"\u2264 3:00": 0,
"3:01 - 4:00": 54,
"4:01 - 6:00": 175,
"6:01 - 9:00": 105,
"9:01 - 15:00": 278,
"15:01 - 24:00": 5,
"\u2265 24:01": 0

}
},
"76 - 100": {

"users": 437,
"activeDays": {

"1 - 9": 0,
"10 - 14": 25,
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 117



Chapter 9 User Engagement Histograms
Results Format
"15 - 19": 136,
"20 - 24": 90,
"25 - 29": 34,
"30 - 44": 120,
"45 - 59": 32,
"\u2265 60": 0

},
"runtime": {

"\u2264 4:00": 0,
"4:01 - 6:00": 50,
"6:01 - 9:00": 191,
"9:01 - 15:00": 147,
"15:01 - 24:00": 49,
"\u2265 24:01": 0

}
},
"101 - 150": {

"users": 658,
"activeDays": {

"1 - 14": 0,
"15 - 19": 23,
"20 - 24": 158,
"25 - 29": 168,
"30 - 44": 165,
"45 - 59": 89,
"60 - 89": 55,
"\u2265 90": 0

},
"runtime": {

"\u2264 4:00": 0,
"4:01 - 6:00": 1,
"6:01 - 9:00": 130,
"9:01 - 15:00": 319,
"15:01 - 24:00": 191,
"24:01 - 48:00": 17,
"\u2265 48:01": 0

}
},
"151 - 250": {

"users": 623,
"activeDays": {

"1 - 24": 0,
"25 - 29": 25,
"30 - 44": 368,
"45 - 59": 129,
"60 - 89": 80,
"90 - 119": 21,
"\u2265 120": 0

},
"runtime": {

"\u2264 9:00": 0,
"9:01 - 15:00": 255,
"15:01 - 24:00": 273,
"24:01 - 48:00": 95,
"\u2265 48:01": 0

}

118 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 9 User Engagement Histograms
Results Format
},
"251 - 500": {

"users": 451,
"activeDays": {

"1 - 29": 0,
"30 - 44": 5,
"45 - 59": 138,
"60 - 89": 193,
"90 - 119": 97,
"120 - 179": 18,
"\u2265 180": 0

},
"runtime": {

"\u2264 15:00": 0,
"15:01 - 24:00": 169,
"24:01 - 48:00": 265,
"48:01 - 96:00": 17,
"\u2265 96:01": 0

}
},
"\u2265 501": {

"users": 145,
"activeDays": {

"1 - 59": 0,
"60 - 89": 1,
"90 - 119": 61,
"120 - 179": 83,
"\u2265 180": 0

},
"runtime": {

"\u2264 24:00": 0,
"24:01 - 48:00": 73,
"48:01 - 96:00": 72,
"\u2265 96:01": 0

}
}

},
"runtime": {

"\u2264 0:05": {
"users": 0,
"activeDays": {},
"sessions": {}

},
"0:06 - 0:15": {

"users": 4,
"activeDays": {

"1": 4,
"\u2265 2": 0

},
"sessions": {

"\u2264 1": 1,
"2": 2,
"3": 1,
"\u2265 4": 0

}
},
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 119



Chapter 9 User Engagement Histograms
Results Format
"0:16 - 0:30": {
"users": 160,
"activeDays": {

"1": 148,
"2": 12,
"\u2265 3": 0

},
"sessions": {

"\u2264 1": 36,
"2": 33,
"3": 44,
"4 - 5": 19,
"6 - 8": 18,
"9 - 12": 10,
"\u2265 13": 0

}
},
"0:31 - 0:45": {

"users": 20,
"activeDays": {

"1": 0,
"2": 20,
"\u2265 3": 0

},
"sessions": {

"\u2264 1": 0,
"2": 5,
"3": 1,
"4 - 5": 8,
"6 - 8": 3,
"9 - 12": 3,
"\u2265 13": 0

}
},
"0:46 - 1:00": {

"users": 168,
"activeDays": {

"1": 0,
"2": 148,
"3": 15,
"4": 5,
"\u2265 5": 0

},
"sessions": {

"\u2264 1": 0,
"2": 9,
"3": 17,
"4 - 5": 61,
"6 - 8": 41,
"9 - 12": 22,
"13 - 20": 18,
"\u2265 21": 0

}
},
"1:01 - 1:30": {

"users": 179,
120 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 9 User Engagement Histograms
Results Format
"activeDays": {
"1 - 2": 0,
"3": 145,
"4": 32,
"5": 2,
"\u2265 6": 0

},
"sessions": {

"\u2264 2": 0,
"3": 3,
"4 - 5": 30,
"6 - 8": 60,
"9 - 12": 35,
"13 - 20": 42,
"21 - 30": 9,
"\u2265 31": 0

}
},
"1:31 - 2:00": {

"users": 277,
"activeDays": {

"1 - 3": 0,
"4": 117,
"5": 150,
"6": 9,
"7 - 9": 1,
"\u2265 10": 0

},
"sessions": {

"\u2264 3": 0,
"4 - 5": 3,
"6 - 8": 45,
"9 - 12": 105,
"13 - 20": 61,
"21 - 30": 51,
"31 - 50": 12,
"\u2265 51": 0

}
},
"2:01 - 3:00": {

"users": 329,
"activeDays": {

"1 - 5": 0,
"6": 159,
"7 - 9": 168,
"10 - 14": 2,
"\u2265 15": 0

},
"sessions": {

"\u2264 5": 0,
"6 - 8": 4,
"9 - 12": 73,
"13 - 20": 122,
"21 - 30": 60,
"31 - 50": 70,
"\u2265 51": 0
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 121



Chapter 9 User Engagement Histograms
Results Format
}
},
"3:01 - 4:00": {

"users": 400,
"activeDays": {

"1 - 6": 0,
"7 - 9": 250,
"10 - 14": 150,
"\u2265 15": 0

},
"sessions": {

"\u2264 8": 0,
"9 - 12": 2,
"13 - 20": 154,
"21 - 30": 74,
"31 - 50": 116,
"51 - 75": 54,
"\u2265 76": 0

}
},
"4:01 - 6:00": {

"users": 609,
"activeDays": {

"1 - 9": 0,
"10 - 14": 452,
"15 - 19": 157,
"\u2265 20": 0

},
"sessions": {

"\u2264 12": 0,
"13 - 20": 20,
"21 - 30": 203,
"31 - 50": 160,
"51 - 75": 175,
"76 - 100": 50,
"101 - 150": 1,
"\u2265 151": 0

}
},
"6:01 - 9:00": {

"users": 667,
"activeDays": {

"1 - 14": 0,
"15 - 19": 307,
"20 - 24": 336,
"25 - 29": 24,
"\u2265 30": 0

},
"sessions": {

"\u2264 20": 0,
"21 - 30": 11,
"31 - 50": 230,
"51 - 75": 105,
"76 - 100": 191,
"101 - 150": 130,
"\u2265 151": 0
122 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 9 User Engagement Histograms
Results Format
}
},
"9:01 - 15:00": {

"users": 1032,
"activeDays": {

"1 - 19": 0,
"20 - 24": 90,
"25 - 29": 360,
"30 - 44": 581,
"45 - 59": 1,
"\u2265 60": 0

},
"sessions": {

"\u2264 30": 0,
"31 - 50": 33,
"51 - 75": 278,
"76 - 100": 147,
"101 - 150": 319,
"151 - 250": 255,
"\u2265 251": 0

}
},
"15:01 - 24:00": {

"users": 687,
"activeDays": {

"1 - 29": 0,
"30 - 44": 230,
"45 - 59": 387,
"60 - 89": 70,
"\u2265 90": 0

},
"sessions": {

"\u2264 50": 0,
"51 - 75": 5,
"76 - 100": 49,
"101 - 150": 191,
"151 - 250": 273,
"251 - 500": 169,
"\u2265 501": 0

}
},
"24:01 - 48:00": {

"users": 450,
"activeDays": {

"1 - 59": 0,
"60 - 89": 259,
"90 - 119": 179,
"120 - 179": 12,
"\u2265 180": 0

},
"sessions": {

"\u2264 100": 0,
"101 - 150": 17,
"151 - 250": 95,
"251 - 500": 265,
"\u2265 501": 73
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 123



Chapter 9 User Engagement Histograms
Results Format
}
},
"48:01 - 96:00": {

"users": 89,
"activeDays": {

"1 - 119": 0,
"120 - 179": 89,
"\u2265 180": 0

},
"sessions": {

"\u2264 250": 0,
"251 - 500": 17,
"\u2265 501": 72

}
},
"\u2265 96:01": {

"users": 0,
"activeDays": {},
"sessions": {}

}
}

}
}

124 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



10

Event Tracking Reports
These reports are meant to provide insight of what features in your product are most popular and how they are used. Due 
to the different needs of each individual software product, Usage Intelligence offers a range of different ways how to track 
events.

• Lifetime Event Tracking Reports

• Basic Event Tracking Reports

• Advanced Event Tracking Reports

Lifetime Event Tracking Reports
The aim of these reports is to show how events occur throughout the clients’ lifetime. The data can be presented either as a 
paged table which shows a list of all events and how many times each occurred, or else as a histogram showing only a 
subset of events as specified. The histogram shows how many clients performed an event throughout their lifetime or their 
average daily/weekly/monthly usage.

• Data Table Report

• Histogram Report

Data Table Report
This report returns data that is to be represented in tabular format. It contains data about each tracked event, how many 
times it occurred, how many times each user performed each event on average, etc. The events can be presented either as 
a flat view or categorized hierarchically based on event category and name. Data for each event can then be segmented by 
any property as described below.

• Request/Response Parameters Summary

• Global Filters

• Segmentation

• Sorting
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 125



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
• Results Format

Request/Response Parameters Summary
This report returns data that is to be represented in tabular format. 

POST /reporting/eventTracking/lifetime/dataTable
126 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Table 10-1 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. Required 
only for non-cookie authentication.

• sessionId (string)—The sessionId obtained via POST /auth/login. Required only 
for non-cookie authentication.

• productId (integer)—The product ID on which this request is being done.

• groupBy (string)—Optional parameter to specify the property with which to group 
installations. By default, this value is considered to be clientId. Other possible 
options are machineId, licenseKey or any custom property of type 3.

• startDate (string)—The first date of the date range on which to base the report. 
This is to be formatted as YYYY-MM-DD.

• stopDate (string)—The last date of the date range during which users must be 
active in order to be included in the report. This is to be formatted as YYYY-MM-DD.

• globalFilters (object)—JSON object containing the filters to be applied to the 
available data. Details about these filters can be found in the Global Filters section.

• segmentBy (string)—he field with which to segment the data. Details about 
segmentation can be found in Segmentation.

• events (array)—Optional parameter to specify which events to include. Array of 
objects specifying which events to include in the result. Supports both single events 
and event combinations. Details can be found in Events Property.

• segments (string)—Used to specify how data is to be segmented. Must be used in 
conjunction with segmentBy. Details about segmentation can be found in 
Segmentation.

• categorizeEvents (boolean)—Whether to return events hierarchically based on 
category/event name (true) or return a flattened list (false).

• sorting (object)—Used to specify the values with which to sort and the direction. 
Details about this field can be found in Sorting.

• paging (object)—Optional parameter used to specify how many events to show 
and the index of the event to start with (starting from 0). These sub-parameters are 
named limit and startAt. Therefore, if showing 10 events per page and requesting 
page 3, limit should be set to 10 and startAt should be set to 20.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 127



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
Global Filters
Most of the available filter properties are string-based. This means that when applying a filter, the requested field can be 
represented as a string, stringArray or regex. There are also some filters which are numeric. These filters should be 
represented as number or numberRange.

• String-Based Filters

• Numeric Filters

• Date Range Filters

• Boolean Filters

• Special Filters

• <NULL> Values for Global Filters

String-Based Filters
The following properties are stored as strings:

machineId *
clientId *
prodVersion
prodEdition
prodBuild
prodLanguage
licenseType
formFactor *
osLanguage
osWordLength *
cpuType *
dotNetVersion *
javaVersion *
javaVendor *
javaRuntime *
javaGraphics *
javaVmVersion *
javaVmName *

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• segmentBy (string)—The same value that was passed as segmentBy in the request

• categorizeEvents (boolean)—The same value that was passed as 
categorizeEvents in the request

• results (object)—Contains the results as requested represented as a JSON object. 
The result format is described below in Results Format.

Table 10-1 • Request Properties

Property Description
128 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
vm *
C01 .. C20 (Custom properties)
licenseKey *

Note • licenseKey requires a special user permission to be used as a filter.

Note • Properties marked with an asterisk (*) are based on the current (latest known) values.

The type field in the above filters needs to be string, stringArray or regex. A value field is always required. The contents 
of this field should be according to the specified type. 

• If string is specified, then the value field must contain a single string that needs to be matched precisely with the 
stored data. 

• If stringArray is specified, then the value field must contain an array of strings where one of which needs to match 
precisely with the stored data. 

• If specifying a regex, the value field should contain a string which is treated as a regular expression and the stored 
data will be matched against it using regular expression rules.

Example Filter Using a String Value

In this example, the product build value needs to be exactly “3014.int-12214”:

{
"prodBuild":

{
"type": "string",
"value": "3014.int-12214"

}
}

Example Filter Using a String Array

In this example, the product build value needs to be either “3014.int-12214”, “3017.enx-57718”, or “4180.vrx-81059”. 
Note that since the type is declared as stringArray, the value field needs to contain an array. Consider all elements in the 
array to have an OR logical expression between them.

{
"prodBuild":

{
"type": "stringArray",
"value": ["3014.int-12214", "3017.enx-57718", "4180.vrx-81059"]

}
}

Example Filter Using a Regular Expression

In this example, the product build value needs to start with “30” and end with “18” whilst having 10 characters in between:

{
 "prodBuild":

 {
 "type": "regex",
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 129



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
 "value": "^30.{10}18$"
 }

}

Numeric Filters
The following properties are stored as numeric values:

cpuCores *
displayCount *
ram *
resolutionWidth *
resolutionHeight *
lifetimeRuntimeMinutes *
lifetimeSessionCount *
screenPpi *
javaVmRam *

Note • Properties marked with an asterisk (*) are based on the current (latest known) values.

The type field in the above filters needs to be number or numberRange. 

• If number is specified, then a value field must also be present. The value field should contain a number, which may 
contain a decimal point if required. 

• If numberRange is specified, then the value field should NOT be used. Instead, the properties min and max are to be 
used. These refer to the minimum and maximum number to be included in the report. If only one limit needs to be set, 
the other property is to be left out. Therefore, if you want to include installations with up to 2 display devices, you 
would not specify a min value, but instead specify only a max and set it as 2.

Example Filter Using a Number Value

In this example, the number of display devices needs to be exactly 3:

{
"displayCount":

{
"type": "number",
"value": 3

}
}

Example Filter Using a Number Range Value

In this example, the RAM needs to be between 1025MB and 4096MB (both included):

{
"ram":

{
"type": "numberRange",
"min": 1025,
"max": 4096

}
}

130 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
Date Range Filters
The following properties are stored as dates:

dateInstalled
dateLastSeen

The type field in the above filters needs to be date or dateRange. 

• If date is specified, then a value field must also be present. The value field should contain a date. 

• If dateRange is specified, then the value field should NOT be used. Instead, the properties min and max are to be used. 
These refer to the minimum and maximum dates to be included in the report. If only one limit needs to be set, the 
other property is to be left out. 

In the following example, users installed after January 1st 2018 are to be shown:

{
 "dateInstalled":

 {
 "type": "dateRange", 
"min": "2018-01-01"

 }
}

Note that all dates must be in ISO 8601 format.

Boolean Filters
The following property is stored as boolean:

touchScreen

The type field in the above filters needs to be boolean. The value must be true or false. 

In the following filter, clients with a touch screen are being requested.

{
"touchScreen":

{
"type": "boolean",
"value": true

}
}

Special Filters
Some filters need to be represented in a special format due to their unique requirements. These special filters are:

• Special Filter: licenseStatus

• Special Filter: os

• Special Filter: geography

• Special Filter: gpu

• Special Filters: optOut and backOff
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 131



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
• Special Filter: lifetimeEventUsage

• Special Filter: reachOutDeliveries

Special Filter: licenseStatus

The licenseStatus filter is made up of 4 sub-values: activated, blocked, expired and allowed. These are presented as 
boolean values. 

Unlike other filters, this filter is presented as an array of JSON objects. Each object can contain a subset (or all) of these 4 
boolean values. 

Consider the following example. In this example, for a client to be included, the license has to either be activated AND 
allowed, or else it can be not allowed AND expired. In other words, ( (activated AND allowed) OR ((NOT)allowed AND 
expired) ).

{
"licenseStatus":

[
{

"activated": true,
"allowed": true

},
{

"allowed": false,
"expired": true

}
]

}

Special Filter: os

The os filter is made up of 3 granularity levels. These are platform, version, and edition. These are meant to split the OS 
name into levels of detail as required by the user. Consider the following:

• platform: Microsoft Windows

• version: Microsoft Windows 7

• edition: Microsoft Windows 7 Professional

If a filter is set on the version “Microsoft Windows 7”, the result would include all editions of Windows 7. One or more of 
these granularity levels may be specified. If more than 1 granularity level is specified, the values are ORed together.

In the following example, all editions of “Microsoft Windows 7” are included, and also “Microsoft Windows Vista Home 
Premium”:

{
"type": "string",
"version": "Microsoft Windows 7",
"edition": "Microsoft Windows Vista Home Premium"

}

In the following example, the type is stringArray. Note that an array needs to be passed if the type is set as such, even if it 
is to contain only 1 element. In this case, the version can be either “Microsoft Windows 7” or “Microsoft Windows 8” (which 
are ORed together). Also, clients running on “Microsoft Windows XP Professional” are to be included.

{

132 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
"type": "stringArray",
"version": ["Microsoft Windows 7", "Microsoft Windows 8"],
"edition": ["Microsoft Windows XP Professional"]

}

Special Filter: geography

The geography filter is made up of 3 granularity levels. These are continent, country, and usState. 

The usState value applies only to United States. Continents and countries are presented in 2-letter codes. Countries follow 
ISO standard 3166-1 alpha-2. US states are presented in ISO 3166-2:US format.

In the following example, the clients have to be either:

• In the continents Asia or Oceania

• In the country Germany

• In the US states New York, New Jersey, or Kansas

{
"type": "stringArray",
"continent": ["AS", "OC"],
"country": ["DE"],
"usState": ["US-NY", "US-NJ", "US-KS"]

}

Important • In this filter, the type can be string or stringArray. Regular expressions are not supported in geography filters.

Special Filter: gpu

The gpu filter is made up of 2 granularity levels. These are vendor and model. Both are represented as string values.

In the following example, the clients have to have a GPU:

• From the vendors NVIDIA or Intel

• With the model AMD Radeon HD 4600

{
"type": "stringArray",
"vendor": ["NVIDIA", "Intel"],
"model": ["AMD Radeon HD 4600"]

}

Special Filters: optOut and backOff

The opt-out mechanism was introduced in SDK version 5.1.0. With this feature, vendors can have their application report to 
the Usage Intelligence servers that a user does not want to be tracked. Using this property, vendors can filter out 
installations that were opted-out. 

Similarly, backoff filtering was introduced with version 5.0.0. Backoff is when a product account runs over-quota and the 
server starts rejecting data. Although filtering for backed-off installations was introduced with version 5, it was also 
backported to previous versions. However, when a new installation with an SDK prior to version 5 tries to register with the 
server and is rejected, it is not marked as being once backed-off when it is eventually accepted by the server. With version 5 
onwards, the server flags an installation as being historically backed-off in such cases.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 133



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
Both backOff and optOut filters are made up of 2 boolean sub-values: historical and current. 

• The historical value refers to installations that were once backed-off or opted-out. These may include installations 
that are still currently backed-off or opted-out. 

• The current value refers to the status during the last time that the client called the server. 

Therefore, if an installation was opted-out yesterday but got opted-in today, it will be marked as historically opted-out but 
not currently opted-out.

In the following example, for a client to be included, the optOut status has to either be historical AND not current, or 
else it can be not historical (i.e. users have to be currently opted-in but used to be opted-out at some point or never 
opted out).

{
"optOut":

[
{

"historical": true,
"current": false

},
{

"historical": false
}

]
}

Special Filter: lifetimeEventUsage

Using lifetime event usage filters, clients can be filtered based on whether a particular event or set of events occurred or 
not within the client’s lifetime. Alternatively, one can set a filter based on the number of times an event has occurred.

In the following example, clients that are included must have done the “File Operations - Open” event at least 5 times to be 
counted.

{
 "category": "File Operations",
 "name": "Open",
 "min": 5

}

In the following example, clients must have done either “File Operations - Open” or “File Operations - Save” for a combined 
total of between 10 to 50 times.

{
"combiArray": [

 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Open"

 },
 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Save",

 }
134 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
],
"min": 10,
"max": 50

}

In the following example, clients must have done any event within the “File Operations” category for a combined total of 
not more than 100 times. This is done using a regular expression in the name.

{
"combiArray": [

{
"categoryType": "string",
"nameType": "regex",
"category": "File Operations",
"name": ".*"

}
 ],

"max": 100
}

Special Filter: reachOutDeliveries

Using ReachOut delivery filters, clients can be filtered based on whether a particular ReachOut message or a combination 
of ReachOut messages were delivered or not within the client’s lifetime.

The filter consists of a JSON array that includes one or more objects. Each object is a combination of delivered and 
undelivered campaigns, and the different combinations are ORed together. Therefore, it is possible to show users that 
either received ReachOut message 1 but not 2, or else received 3 but not 4 as in the following example.

In the following example, we are looking for clients who either received campaign 1 but not 2, OR received campaign 2 but 
not 3.

[
 {"auto": {"delivered": ["1"], "undelivered":["2"]}},
 {"auto": {"delivered": ["2"], "undelivered":["3"]}}

]

The above example contains only “auto” ReachOut campaigns. Manual campaigns can be specified using “manual” 
instead of “auto” as in the above example. Each object can contain a mix of “auto” and “manual” campaigns.

<NULL> Values for Global Filters
Most of the available properties can include null values. There are different reasons why a value would be null. When these 
are properties that are set by the application, the possible reasons why a value would be null are: cases where the value has 
not been set by the application (such as prodBuild never being set), and cases where values are set to an empty string (“”) 
or to a string containing “<NULL>”. 

One other reason is that although these values have been set, the SDK has not yet had time to sync with the servers to 
provide this new information. 

In cases where the properties are set automatically such as hardware or OS related information, the values would be null if 
the SDK failed to retrieve that value from the OS or if the server failed to identify the value retrieved by the SDK. 

Other reasons include cases where Java version is requested from an application that does not use the Java SDK, US state 
is requested for users who are not running within the US, etc.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 135



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
The following are the properties that support null values:

prodVersion
prodEdition
prodBuild
prodLanguage
machineId
formFactor
vm
cpuType
cpuCores
ram
resolutionWidth
resolutionHeight
javaVersion
javaVmVersion
javaVmName
javaVendor
javaRuntime
javaGraphics
osLanguage
licenseKey
C01 .. C20 (Custom properties)
os
geography
gpu

Null values can be requested either on their own or as part of a filter containing other values.

The following example would return only cases where the prodVersion is null:

{
"prodVersion":

{
"includeNull": true

}
}

The following example would return cases where the prodVersion is either 1.1, 1.2 or null:

{
"prodVersion":

{
"type": "stringArray",
"value": ["1.1", "1.2"],
"includeNull": true

}
}

By default, when specifying a filter, null values would not be included. Therefore, in the following example, only clients 
with prodVersion set to 1.1 or 1.2 will be included, while null values are excluded:

{
"prodVersion":

{
"type": "stringArray",
"value": ["1.1", "1.2"]

}
}

136 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
However, if no filter is specified, then nulls are included by default. Therefore, if you want to include any value of 
prodVersion as long as it is not null, a prodVersion filter needs to be included as follows:

{
"prodVersion":

{
"type": "regex",
"value": ".*",
"includeNull": false

}
}

In the case of filters that use sub-properties (os, geography, and gpu), the includeNull filter is to be included in the sub-
property and applies to that specific sub-property only. In order to be able to include the includeNull property, instead of 
providing the value as a string or an array of strings, the value of the sub-property must be a JSON object that contains a 
property named “value”, and another named “includeNull”. Each of these properties is optional, but at least one of them 
must be present.

In the case of geography, this has a very particular meaning. Requesting for null “country” value does not return all cases 
where the country could not be retrieved, but only cases where the continent could be retrieved but the country could not. 
Similarly, requesting null “usState” returns cases where the continent and country could be retrieved but the US state 
could not. This does not include clients that are not situated in the US. If you are interested in finding clients where we 
could not detect any geographical data, the includeNull filter needs to be applied in the continent sub-property.

In the following example, we are requesting cases where we know that the client is within the US but the state could not be 
identified:

{
"geography":

{
"type": "string",
"country": "US",
"usState":

{
"includeNull": true

}
}

}

In the following example, we are requesting cases where the GPU is either “NVIDIA”, “AMD” or null (unidentified):

{
"gpu":

{
"type": "stringArray",
"vendor":

{
"value": ["NVIDIA", "AMD"],
"includeNull": true

}
}

}

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 137



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
Segmentation
The data in this report is segmented based on the specified property. The property used for segmentation is to be specified 
in the segmentBy field. The segments field should specify how the report is to be segmented.

• String-Based Segmentation Properties

• Numeric Segmentation Properties

• Boolean Segmentation Properties

• Special Segmentation Properties

• <NULL> Values for Segmentation

String-Based Segmentation Properties
The following properties are stored as strings:

machineId *
clientId *
prodVersion
prodEdition
prodBuild
prodLanguage
licenseType
formFactor *
osLanguage
osWordLength *
cpuType *
javaVersion *
javaVendor *
javaRuntime *
javaGraphics *
javaVmVersion *
javaVmName *
vm *
C01 .. C20 (Custom properties)
licenseKey *

Note • licenseKey requires a special user permission to be used for segmentation.

Note • Properties marked with an asterisk (*) are based on the current (latest known) values.

The type field when using one of the above properties needs to be string, stringArray or regex. A value field is always 
required. The contents of this field should be according to the specified type. 

• If string is specified, then the value field must contain a single string that needs to be matched precisely with the 
stored data. 

• If stringArray is specified, then the value field must contain an array of strings where one of which needs to match 
precisely with the stored data. 
138 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
• If specifying a regex, the value field should contain a string which is treated as a regular expression and the stored 
data will be matched against it using regular expression rules.

Example Using Segmentation by string, stringArray, and regex Values
{

"segmentBy": "prodVersion",
"segments": [

{
"type": "string",
"value": "1.0"

},
{

"type": "stringArray",
"value": ["2.0", "2.1", "3.1"],
"split": false,
"segmentLabel": "Versions 2 and 3"

},
{

"type": "regex",
"value": "^4\..*",
"split": false,
"segmentLabel": "All version 4"

},
{

"type": "regex",
"value": "^5\..*",
"split": true

}
]

}

In the above example, we are requesting a report with multiple segments. The first segment contains installations running 
version 1.0. Notice how this does not require a “split” property since there is only 1 value and therefore no further splitting 
is possible. The second segment contains versions 2.0, 2.1 and 3.1. In this case, the “split” property is required, and since 
we are requesting the API to combine these 3 versions, we must provide a “segmentLabel” value so that the returned data 
can be identified. The third segment is similar, although in this case the request is built using a regular expression. In this 
case, all versions starting with “4.” are to be included into one combined segment.

The last segment is different from the rest because we are requesting the API to split the data (split is set to true). 
Therefore, this can produce much more than 1 segment. In this case, we could see segments such as “5.1”, “5.2”, etc. 
Notice how since we are splitting, we should not provide a segmentLabel value since the labels are built using the different 
values that are found in the data.

Numeric Segmentation Properties
The following properties are stored as numeric values:

cpuCores
displayCoun
ram
resolutionWidth
resolutionHeight
lifetimeRuntimeMinutes
lifetimeSessionCount
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 139



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
screenPpi
javaVmRam

The type field in the above properties needs to be number or numberRange. If number is specified, then a value field must 
also be present. The value field should contain a number, which may contain a decimal point if required. If numberRange is 
specified, then the value field should NOT be used. Instead, the properties min and max are to be used. These refer to the 
minimum and maximum number to be included in the report. If only one limit needs to be set, the other property is to be 
left out. Therefore, if you want to include installations with up to 2 display devices, you would not specify a min value, but 
instead specify only a max and set it as 2.

Example Using Segmentation by number, and numberRange Values
{

"segmentBy": "cpuCores",
"segments": [

{
"type": "number",
"value": 1,

},
{

"type": "numberRange",
"min": 2,
"max": 4,
"segmentLabel": "2 - 4"

},
{

"type": "numberRange",
"min": 5,
"segmentLabel": "5 +"

}
]

}

In the above example, we are requesting a report with 3 segments. The first segment contains only installations running on 
1 CPU core, the second segments contains installations running on 2, 3, or 4 cores (range 2 - 4), while the last segment 
contains all installations which are running on a machine with 5 or more CPU cores. Note how when the type was 
numberRange, we had do specify a segmentLabel which is a free string that will be used by the user to identify what is being 
included in that specific segment.

Boolean Segmentation Properties
The following properties are stored as boolean values:

touchScreen

The type field needs to be boolean, and the value must be true or false. A segmentLabel field is also required

The following example requests data segmented by touchScreen:

{
"segmentBy": "touchScreen",
"segments": [

{
"type": "boolean",
"value": true,
"segmentLabel": "Yes"
140 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
},
{

"type": "boolean",
"value": false,
"segmentLabel": "No"

},
{

"includeNull": true,
"segmentLabel": "Unknown"

}
]

}

In the above example, we are requesting a report with 3 segments. The first segment contains installations on which a 
touch screen was detected, the second one where no touch screen has been detected, while the last one is where we could 
not detect whether a touch screen is present due to the client using an old SDK which did not have touch screen detection 
support.

Special Segmentation Properties
Some properties need to be represented in a special format due to their unique requirements. These special properties are:

• Special Segmentation Format: licenseStatus

• Special Segmentation Format: os

• Special Segmentation Format: geography

• Special Segmentation Format: gpu

• Special Segmentation Format: optOut and backOff

Special Segmentation Format: licenseStatus

The licenseStatus value is made up of 4 sub-values: activated, blocked, expired and allowed. These are presented as 
boolean values. Any number of segments can be defined, and each segment can contain any subset of the 4 sub-values. 
These values are ANDed together. A segmentLabel value is required.

In the following example, 2 segments are specified - the first one showing blocked AND not expired and the second one 
showing allowed AND activated:

[
{

"segmentLabel": "BL and not EXP",
"blocked": true,
"expired": false

},
{

"segmentLabel": "WL and ACT",
"allowed": true,
"expired": true

}
]

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 141



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
Special Segmentation Format: os

The os value is made up of 3 granularity levels - platform, version, and edition. A particular level needs to be selected, 
and this is to be included in the property name such as os.version or os.edition. For a description of the differences 
between the 3 granularity levels, refer to Special Filter: os.

The following example requests data segmented by all OS versions:

{
"segmentBy": "os.version",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

}

In the above example, no filtering is being done, and instead, a regular expression to include everything is set as the value. 
This will result in all OS versions to be returned.

Special Segmentation Format: geography

The geography value is made up of 3 granularity levels - continent, country, and usState. These granularity levels are 
explained in Special Filter: geography. A particular level needs to be selected, and this is to be included in the property 
name such as geography.continent or geography.country.

The following example requests data segmented by all countries:

{
"segmentBy": "geography.country",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

}In the above example, no filtering is being done, and instead, a regular expression to include everything is set as the value. 
This will result in all countries to be returned.

Special Segmentation Format: gpu

The gpu value is made up of 2 granularity levels - vendor and model. These granularity levels are explained in Special Filter: 
gpu. A particular level needs to be selected, and this is to be included in the property name, namely gpu.vendor or 
gpu.model. 

The following example requests data segmented by all GPU vendor:

{
"segmentBy": "gpu.vendor",
"segments": [

{
"type": "regex",
"value": ".*",
142 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
"split": true
}

]
}

In the above example, no filtering is being done, and instead, a regular expression to include everything is set as the value. 
This will result in all the GPU vendors to be returned.

Special Segmentation Format: optOut and backOff

Both backOff and optOut values are made up of 2 boolean sub-values: historical and current. Any number of segments 
can be defined, and each segment can contain any subset of the 2 sub-values. These values are ANDed together. A 
segmentLabel value is required.

In the following example, 2 segments are specified - the first one showing historical AND not current and the second one 
showing not historical (i.e. never opted-out):

[
{

"segmentLabel": "HISTORICAL and not CURRENT",
"historical": true,
"current": false

},
{

"segmentLabel": "Never opted-out",
"historical": false

}
]

<NULL> Values for Segmentation
Null values in segmentation are to be requested in a similar way to null values in filters (<NULL> Values for Global Filters). 
The same properties that support null in filtering also support null in segmentation.

By default, when segmenting, null values are not included within the segments, since only the values that have been 
specified in each segment are included. Null values don’t match any regular expression, so the only way to request null 
values to be included is to specify “includeNull” as true in a similar way to filtering. In segmentation, null values are 
returned as “<NULL>”. The API considers all cases where the data has never been set from the SDK, set as an empty string, 
or set as a string containing “<NULL>” to be the same.

The following example requests all values of prodBuild including null:

{
"level1": {

"property": "prodBuild",
"segments": [

{
"type": "regex",
"value": ".*",
"includeNull": true

}
]

}
}

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 143



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
In the case of segmentation properties that use sub-properties (os, geography, and gpu), the includeNull value is to be 
included in the sub-property and applies to that specific sub-property only. In order to be able to include the includeNull 
property, instead of providing the value as a string or an array of strings, the value of the sub-property must be a JSON 
object that cointains a property named “value”, and another named “includeNull”. Each of these properties is optional, but 
at least one of them must be present. The same rules that apply for filtering these types of properties for null values also 
apply to segmentation.

In the following example, we are requesting segmentation by continent and are also requesting the number of clients 
where we could not detect the geographical location:

{
"level1": {

"property": "geography",
"segments": [

{
"type": "regex",
"continent": {

 "value": ".*",
 "includeNull": true

 }
}

]
}

}

Sorting
The sorting parameter expects a JSON object which is made up of the following:

• events (string)—The value with which the event names are to be sorted. Possible values are alpha (alphabetical 
sorting), eventCounts, or uniqueUsersUsedAtLeastOnce.

• eventsDirection (string)—Whether to sort event names in ascending or descending order. Possible values are asc or 
desc.

• segments (string)—The value with which the segments are to be sorted. Possible values are alpha (alphabetical 
sorting), active (sorting by count of active users), eventCounts, uniqueUsersUsedAtLeastOnce, or 
percentUsedAtLeastOnce.

• segmentsDirection (string)—Whether to sort segments in ascending or descending order. Possible values are asc or 
desc.

Results Format
The structure of the results depends on whether the categorizeEvents property is set to true or false, and whether 
segmentation is being used. 

The simplest form is when events are not categorized and segmentation is disabled. In this case, the results property 
contains an array of objects each containing details about each event (event category and name), how many times the 
event occurred in total, how many times each event occurred per user on average, etc. When setting categorizeEvents to 
true, the results are presented into 2 levels. The results are still an array of objects, but each object consists of only 2 
144 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
properties - eventCategory and categoryData. The categoryData value is an array of objects, and each object contains the 
data for one event within that particular category. The only difference is that this sub-object does not contain the 
eventCategory property since that property is already present in the upper level.

Segmentation adds another level in the results. When using segmentation, each event object contains a property named 
segments. The segments value is an array of objects, with each object containing data about one segment. The segment 
name can be found in the property value named segmentLabel. The rest of the properties are common with the properties 
inside the event objects.

The following are the properties contained in the data objects:

For more information, see:

• Example Response with No Event Categorization and No Segmentation

Table 10-2 • Data Object Properties

Property Description

eventCategory (string) Present only in event objects when categorizeEvents is set to 
false. Contains the event category.

eventName (string) Present in event objects. Contains the event name.

segmentLabel (string) Present in segment objects. Contains the name/label of the 
segment.

eventCount (integer) The total number of times that the event occurred.

eventCountPerUserUsedAtLeastOnce (float) The average number of times that this event occurred for each 
client that performed this event at least once.

eventCountPerUserUsedAtLeastOnceActiveDay 
(float)

The average number of times that this event occurred per day for 
each client that performed this event at least once.

eventCountPerUserUsedAtLeastOnceActiveWeek 
(float)

The average number of times that this event occurred per week 
for each client that performed this event at least once.

eventCountPerUserUsedAtLeastOnceActiveMonth 
(float)

The average number of times that this event occurred per month 
for each client that performed this event at least once.

usersUsedAtLeastOnce (integer) The number of clients which performed this event at least once.

percentUsedAtLeastOnce (float) The percentage of clients which performed this event at least 
once.

usersNeverUsed (integer) The number of clients which never performed this event.

percentNeverUsed (float) The percentage of clients which never performed this event.

segments (object) Present only in event objects when segmentation is being used. 
Contains an array of objects - one object for each segment.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 145



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
• Example Response with Event Categorization and Segmentation by prodVersion

Example Response with No Event Categorization and No Segmentation
HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "OK",
"segmentBy": null,
"categorizeEvents": false,
"results": [

{
"eventCategory": "File Menu",
"eventName": "Open",
"eventCount": 5000,
"eventCountPerUserUsedAtLeastOnce": 20.0,
"eventCountPerUserUsedAtLeastOnceActiveDay": 2.62,
"eventCountPerUserUsedAtLeastOnceActiveDay": 9.84,
"eventCountPerUserUsedAtLeastOnceActiveDay": 29.96,
"usersUsedAtLeastOnce": 250,
"percentUsedAtLeastOnce": 50.0,
"usersNeverUsed": 250,
"percentNeverUsed": 50.0

},
{

"eventCategory": "File Menu",
"eventName": "Save",
"eventCount": 2000,
"eventCountPerUserUsedAtLeastOnce": 20.0,
"eventCountPerUserUsedAtLeastOnceActiveDay": 2.62,
"eventCountPerUserUsedAtLeastOnceActiveDay": 9.84,
"eventCountPerUserUsedAtLeastOnceActiveDay": 29.96,
"usersUsedAtLeastOnce": 100,
"percentUsedAtLeastOnce": 20.0,
"usersNeverUsed": 400,
"percentNeverUsed": 80.0

},
{

"eventCategory": "Edit Menu",
"eventName": "Enlarge",
"eventCountPerUser": 1.0,
"eventCountPerUserUsedAtLeastOnce": 0.3,
"eventCountPerUserUsedAtLeastOnceActiveDay": 2.62,
"eventCountPerUserUsedAtLeastOnceActiveDay": 9.84,
"eventCountPerUserUsedAtLeastOnceActiveDay": 29.96,
"usersUsedAtLeastOnce": 150,
"percentUsedAtLeastOnce": 30.0,
"usersNeverUsed": 350,
"percentNeverUsed": 70.0

}
 ]
146 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
Example Response with Event Categorization and Segmentation by prodVersion
HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "OK",
"segmentBy": "prodVersion",
"categorizeEvents": true,
"results": [

{
"eventCategory": "File Menu",
"categoryData":

[
{

"eventName": "Open",
"eventCount": 5000,
"eventCountPerUserUsedAtLeastOnce": 20.0,
"eventCountPerUserUsedAtLeastOnceActiveDay": 2.62,
"eventCountPerUserUsedAtLeastOnceActiveDay": 9.84,
"eventCountPerUserUsedAtLeastOnceActiveDay": 29.96,
"usersUsedAtLeastOnce": 250,
"percentUsedAtLeastOnce": 50.0,
"usersNeverUsed": 250,
"percentNeverUsed": 50.0
"segments":

[
{

"segmentLabel": "V1.1",
"eventCount": 3000,
"eventCountPerUserUsedAtLeastOnce": 20.0,
"eventCountPerUserUsedAtLeastOnceActiveDay": 2.62,
"eventCountPerUserUsedAtLeastOnceActiveDay": 9.84,
"eventCountPerUserUsedAtLeastOnceActiveDay": 29.96,
"usersUsedAtLeastOnce": 150,
"percentUsedAtLeastOnce": 33.33,
"usersNeverUsed": 300,
"percentNeverUsed": 66.66

},
{

"segmentLabel": "V1.5",
"eventCount": 2000,
"eventCountPerUserUsedAtLeastOnce": 10.0,
"eventCountPerUserUsedAtLeastOnceActiveDay": 1.85,
"eventCountPerUserUsedAtLeastOnceActiveDay": 4.27,
"eventCountPerUserUsedAtLeastOnceActiveDay": 14.92,
"usersUsedAtLeastOnce": 100,
"percentUsedAtLeastOnce": 33.33,
"usersNeverUsed": 200,
"percentNeverUsed": 66.66

}
]

},
{

"eventName": "Save",
"eventCount": 2000,
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 147



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
"eventCountPerUserUsedAtLeastOnce": 20.0,
"eventCountPerUserUsedAtLeastOnceActiveDay": 2.62,
"eventCountPerUserUsedAtLeastOnceActiveDay": 9.84,
"eventCountPerUserUsedAtLeastOnceActiveDay": 29.96,
"usersUsedAtLeastOnce": 100,
"percentUsedAtLeastOnce": 20.0,
"usersNeverUsed": 400,
"percentNeverUsed": 80.0,
"segments":

[
{

"segmentLabel": "V1.1",
"eventCount": 1300,
"eventCountPerUserUsedAtLeastOnce": 13.0,
"eventCountPerUserUsedAtLeastOnceActiveDay": 4.98,
"eventCountPerUserUsedAtLeastOnceActiveDay": 11.31,
"eventCountPerUserUsedAtLeastOnceActiveDay": 24.18,
"usersUsedAtLeastOnce": 150,
"percentUsedAtLeastOnce": 40.0,
"usersNeverUsed": 100,
"percentNeverUsed": 60.0

},
{

"segmentLabel": "V1.5",
"eventCount": 700,
"eventCountPerUserUsedAtLeastOnce": 7.0,
"eventCountPerUserUsedAtLeastOnceActiveDay": 3.1,
"eventCountPerUserUsedAtLeastOnceActiveDay": 7.27,
"eventCountPerUserUsedAtLeastOnceActiveDay": 11.82,
"usersUsedAtLeastOnce": 100,
"percentUsedAtLeastOnce": 25.0,
"usersNeverUsed": 300,
"percentNeverUsed": 75.0

}
]

}
]

},
{

"eventCategory": "Edit Menu",
"categoryData":

[
{

"eventName": "Enlarge",
"eventCount": 500,
"eventCountPerUserUsedAtLeastOnce": 0.3,
"eventCountPerUserUsedAtLeastOnceActiveDay": 2.62,
"eventCountPerUserUsedAtLeastOnceActiveDay": 9.84,
"eventCountPerUserUsedAtLeastOnceActiveDay": 29.96,
"usersUsedAtLeastOnce": 150,
"percentUsedAtLeastOnce": 30.0,
"usersNeverUsed": 350,
"percentNeverUsed": 70.0,
"segments":

[
{

148 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
"segmentLabel": "V1.1",
"eventCount": 200,
"eventCountPerUserUsedAtLeastOnce": 3.33,
"eventCountPerUserUsedAtLeastOnceActiveDay": 4.32,
"eventCountPerUserUsedAtLeastOnceActiveDay": 12.47,
"eventCountPerUserUsedAtLeastOnceActiveDay": 25.51,
"usersUsedAtLeastOnce": 60,
"percentUsedAtLeastOnce": 28.57,
"usersNeverUsed": 150,
"percentNeverUsed": 71.43

},
{

"segmentLabel": "V1.5",
"eventCount": 300,
"eventCountPerUserUsedAtLeastOnce": 3.33,
"eventCountPerUserUsedAtLeastOnceActiveDay": 5.33,
"eventCountPerUserUsedAtLeastOnceActiveDay": 6.42,
"eventCountPerUserUsedAtLeastOnceActiveDay": 9.18,
"usersUsedAtLeastOnce": 90,
"percentUsedAtLeastOnce": 31.03,
"usersNeverUsed": 200,
"percentNeverUsed": 68.97

}
]

}
]

}
 ]

Histogram Report
This report returns data that is to be represented in chart format. The result consists of histogram-style data for each 
different event or event combination that has been requested. The results consist of 4 histograms based on different 
values: event counts, average event count per day, average event count per week, and average event count per month.

• Request/Response Parameters Summary

• Events Property

• lowerBounds and binUpperBounds Properties

• Results Summary

• Results Histograms

Request/Response Parameters Summary
POST /reporting/eventTracking/lifetime/histogram
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 149



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Events Property
The events property consists of an array of objects each representing a single event or a combination of events which are to 
be grouped together and represented as if they were a single event.

Table 10-3 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. Required 
only for non-cookie authentication.

• sessionId (string)—The sessionId obtained via POST /auth/login. Required only for 
non-cookie authentication.

• productId (integer)—The product ID on which this request is being done.

• groupBy (string)—Optional parameter to specify the property with which to group 
installations. By default, this value is considered to be clientId. Other possible 
options are machineId, licenseKey or any custom property of type 3.

• startDate (string)—The first date of the date range during which users must be 
active in order to be included in the report. This is to be formatted as YYYY-MM-DD.

• stopDate (string)—The last date of the date range during which users must be 
active in order to be included in the report. This is to be formatted as YYYY-MM-DD.

• globalFilters (object)—JSON object containing the filters to be applied to the 
available data. These work exactly the same as in the data table report. Details can 
be found in Global Filters.

• events (array)—Array of objects specifying which events to include in the result. 
Supports both single events and event combinations. Details can be found in Events 
Property.

• lowerBounds (object)—Optional parameter to specify the lower bounds of each 
histogram. Must be used in conjunction with binUpperBounds. Details can be found 
in lowerBounds and binUpperBounds Properties.

• binUpperBounds (object)—Optional parameter to specify the histogram bin 
bounds. Must be used in conjunction with lowerBounds. Details can be found in 
lowerBounds and binUpperBounds Properties.

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• summary (object)—Contains the number of clients who performed each event at 
least once and the number of clients which never performed each event. The 
summary data format is described in Results Histograms.

• histograms (object)—Contains the histogram data as requested represented as a 
JSON object. The histogram data format is described in Results Histograms.
150 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
To specify a single event, the events array would contain an object similar to the following example:

{
 "category": "File Operations",
 "name":"Open"

}

To specify a combination of events, the events array would contain an object that looks like the following:

{
 "combiLabel": "Open and Save",
 "combiArray": [

 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Open"

 },
 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Save",

 }
]

}

In the above example, we are combining the data from the Open and Save events, both under the File Operations 
category. In this example, “string” is being used both as categoryType and nameType. The other possible value is “regex”. 

The following example shows a case where all events under the File Operations category are being combined:

{
 "combiLabel": "All File Operations",
 "combiArray": [

 {
 "categoryType": "string",
 "nameType": "regex",
 "category": "File Operations",
 "name": ".*"

 }
]

}

In order to allow more advanced reporting, it is also possible to apply different filters for each event using a property 
named eventFilters. This way, it is possible to compare usage of a property or group of properties between different user 
groups. The format for eventFilters is exactly the same as globalFilters.

In the following example, we are comparing how the clients that are on version 1.1 have used the “Open” event vs. those 
clients that are on version 2.0:

[
{

 "category": "File Operations",
 "name":"Open",
 "eventFilters":

 {
 "prodVersion":
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 151



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
 {
 "type": "string",
 "value": "1.1"

 }
 }

},
{

 "category": "File Operations",
 "name":"Open",
 "eventFilters":

 {
 "prodVersion":

 {
 "type": "string",
 "value": "2.0"

 }
 }

}
]

It is also possible to apply different filters to different events within the same combiArray. Note that the use cases for this 
kind of filtering are rather limited, and in most cases, this method of filtering is not advised unless you have very specific 
requirements. In the following example, we are requesting the “Open” event for version 1.1 combined with the “Save” 
event for version 2.0:

{
 "combiLabel": "Open and Save in v1.1 and v2.0 respectively",
 "combiArray": [

 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Open",
 "eventFilters":

 {
 "prodVersion":

 {
 "type": "string",
 "value": "1.1"

 }
 }

 },
 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Save",
 "eventFilters":

 {
 "prodVersion":

 {
 "type": "string",
 "value": "2.0"

 }
 }

 }
152 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
]
}

lowerBounds and binUpperBounds Properties
By default, this report generates the histogram bins (ranges) automatically using a proprietary algorithm to reduce the 
effect of outliers. The lowerBounds and binUpperBounds are optional properties to allow the user to manually specify the 
bins instead of using this algorithm.

Both properties consist of a JSON object which contains 4 properties - eventCount, averageCountPerActiveDay, 
averageCountPerActiveWeek, and averageCountPerActiveMonth.

The lowerBounds object contains the lowest boundary in the leftmost bin in the histogram. The expected values inside the 
lowerBounds object are numeric. The eventCount value is an integer greater or equal to 1, while the other values are 
floating point numbers greater or equal to 0. Floating point numbers are expected to contain up to 2 decimal places, 
otherwise they are rounded.

The following is an example lowerBounds object:

{
"eventCount": 1,
"averageCountPerActiveDay": 0.1,
"averageCountPerActiveWeek": 0.1,
"averageCountPerActiveMonth": 0.1

}

The binUpperBounds property contains the upper boundaries of each bin in the histogram. The expected values inside the 
binUpperBounds object are arrays containing numeric values or a string containing “inf”. Each boundary must be higher 
than the one before it, and the first boundary must be greater than or equal to its corresponding value in lowerBounds. 
Similar to lowerBounds, the eventCount values are expected to be integers, while other values are expected to be floating 
point numbers with up to 2 decimal places.

The following is an example of the binUpperBounds object:

{
"eventCount": [1, 2, 4, 8, 16, 32, "inf"],
"averageCountPerActiveDay": [0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 10, 50, 100, "inf"],
"averageCountPerActiveWeek": [0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 10, 50, 100, "inf"],
"averageCountPerActiveMonth": [0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 10, 50, 100, "inf"]

}

Results Summary
The summary section is intended to show how many clients performed each event vs. the number of clients which never 
performed each event.

{
"usedAtLeastOnce": [{

"combiLabel": "Save or Delete",
"value": 5

}, {
"category": "File Menu",
"name": "Open",
"value": 20

}],
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 153



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
"neverUsed": [{
"combiLabel": "Save or Delete",
"value": 37

}, {
"category": "File Menu",
"name": "Open",
"value": 112

}]
}

Results Histograms
The histograms section contains the actual histogram results as requested.

{
"eventCount":
{
"1 - 2":
[
{

"combiLabel": "Save or Delete",
"value": 10

},
{

"category": "File Menu",
"name": "Open",
"value": 10

}
],

"3 - 5":
[
{

"combiLabel": "Save or Delete",
"value": 10

},
{

"category": "File Menu",
"name": "Open",
"value": 10

}
],

"6 - 8":
[
{

"combiLabel": "Save or Delete",
"value": 1

},
{

"category": "File Menu",
"name": "Open",
"value": 1

}
],

"9 - 11":
[

154 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
{
"combiLabel": "Save or Delete",
"value": 0

},
{

"category": "File Menu",
"name": "Open",
"value": 0

}
]

},
"averageCountPerActiveDay":
{
"0.0 - 0.1":
[
{

"combiLabel": "Save or Delete",
"value": 0

},
{

"category": "File Menu",
"name": "Open",
"value": 0

}
],

"0.11 - 0.2":
[
{

"combiLabel": "Save or Delete",
"value": 4

},
{

"category": "File Menu",
"name": "Open",
"value": 4

}
],

"0.21 - 3.0":
[
{

"combiLabel": "Save or Delete",
"value": 20

},
{

"category": "File Menu",
"name": "Open",
"value": 20

}
],

"3.01 - 4.0":
[
{

"combiLabel": "Save or Delete",
"value": 1

},
{

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 155



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
"category": "File Menu",
"name": "Open",
"value": 1

}
],

"4.01 - 5.0":
[
{

"combiLabel": "Save or Delete",
"value": 0

},
{

"category": "File Menu",
"name": "Open",
"value": 0

}
]

},
"averageCountPerActiveWeek":
{
"0.5 - 1.0":
[
{

"combiLabel": "Save or Delete",
"value": 18

},
{

"category": "File Menu",
"name": "Open",
"value": 18

}
],

"1.01 - 2.0":
[
{

"combiLabel": "Save or Delete",
"value": 2

},
{

"category": "File Menu",
"name": "Open",
"value": 2

}
],

"2.01 - 3.0":
[
{

"combiLabel": "Save or Delete",
"value": 3

},
{

"category": "File Menu",
"name": "Open",
"value": 3

}
],
156 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Lifetime Event Tracking Reports
"3.00 - 4.0":
[
{

"combiLabel": "Save or Delete",
"value": 2

},
{

"category": "File Menu",
"name": "Open",
"value": 2

}
],

"4.01 - 5.0":
[
{

"combiLabel": "Save or Delete",
"value": 0

},
{

"category": "File Menu",
"name": "Open",
"value": 0

}
]

},
"averageCountPerActiveMonth":
{
"0.7 - 1.0":
[
{

"combiLabel": "Save or Delete",
"value": 16

},
{

"category": "File Menu",
"name": "Open",
"value": 16

}
],

"1.01 - 3.0":
[
{

"combiLabel": "Save or Delete",
"value": 3

},
{

"category": "File Menu",
"name": "Open",
"value": 3

}
],

"3.01 - 5.0":
[
{

"combiLabel": "Save or Delete",
"value": 4
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 157



Chapter 10 Event Tracking Reports
Basic Event Tracking Reports
},
{

"category": "File Menu",
"name": "Open",
"value": 4

}
],

"6.01 - 7.0":
[
{

"combiLabel": "Save or Delete",
"value": 1

},
{

"category": "File Menu",
"name": "Open",
"value": 1

}
]

}
}

Basic Event Tracking Reports
Basic event tracking reports are presented in either a data table format which is meant to show a list of all known events 
within a date range and how they occurred, and also in a timeline format which is meant to show the daily usage of a 
smaller subset. Normally, the timeline chart is used to drill-down on a selection of events that can be seen on the data 
table.

• Data Table Report

• Timeline Report

Data Table Report
This report returns data that is to be represented in tabular format. It contains data about each tracked event, how many 
times it occurred, how many times each user performed each event on average, etc.

• Request/Response Parameters Summary

• Results Format

Request/Response Parameters Summary
POST /reporting/eventTracking/basic/dataTable
158 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Basic Event Tracking Reports
The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Results Format
The results are formatted as an array which contains a JSON object for each category. Each of these objects has a property 
named “category” which refers to the category names of the events. If there are events that were not assigned a category, 
they can be found under a category named null. 

Each of these objects contains 3 other keys - categoryUsageSummary, categoryCustomValuesSummary, and 
categoryEventsData. The first two contain objects that contain values regarding the totals for each category. 

In the below example, the events in the File Operations category occurred for a total of 554 times. This is displayed in the 
cumulativeUsageCount property inside categoryUsageSummary.

The categoryEventsData object, contains data about each individual event type in that particular category. This object 
contains a number of sub-objects, each referring to a particular event name. The keys refer to the event names. Each of 
these sub-objects contain 2 keys - eventUsage and eventCustomValues. These contain the data values for individual 
events. For example, the event Menu Launched inside the Print Operations category occurred only 1 time, and the total 
numeric custom value collected by this event was 1.29.

Example Request
POST /reporting/eventTracking/basic/dataTable HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",

Table 10-4 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. Required 
only for non-cookie authentication.

• sessionId (string)—The sessionId obtained via POST /auth/login. Required only 
for non-cookie authentication.

• productId (integer)—The product ID on which this request is being done/

• startDate (string)—The first date of the date range on which to base the report. 
This is to be formatted as YYYY-MM-DD.

• stopDate (string)—The last date of the date range on which to base the report. This 
is to be formatted as YYYY-MM-DD.

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• results (object)—Contains the results as requested represented as a JSON object. 
The result format is described below.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 159



Chapter 10 Event Tracking Reports
Basic Event Tracking Reports
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 12345678901,
"startDate": "2018-08-01",
"stopDate": "2018-08-03"

}

Example Response
HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "OK",
"results": [

{
"category": "File Operations",
"categoryUsageSummary": {

"cumulativeUsageCount": 554,
"averageCountPerUser": 1.01,
"averageCountPerSession": 0.21,
"averageCountPerRuntimeHour": 0.01

},
"categoryCustomValuesSummary": {

"cumulativeCustomValueCount": 2495.03,
"averageCustomValuePerEvent": 4.66,
"averageCustomValuePerUser": 4.71,
"averageCustomValuePerSession": 0.99,
"averageCustomValuePerRuntimeHour": 0.03

},
"categoryEventsData": {

"Open": {
"eventUsage": {

"cumulativeUsageCount": 455,
"averageCountPerUser": 0.71,
"averageCountPerSession": 0.15,
"averageCountPerRuntimeHour": 0.24

},
"eventCustomValues": {

"cumulativeCustomValueCount": 2118.31,
"averageCustomValuePerEvent": 4.66,
"averageCustomValuePerUser": 3.3,
"averageCustomValuePerSession": 0.69,
"averageCustomValuePerRuntimeHour": 1.11

}
},
"Save": {

"eventUsage": {
"cumulativeUsageCount": 99,
"averageCountPerUser": 0.15,
"averageCountPerSession": 0.03,
"averageCountPerRuntimeHour": 0.05

},
"eventCustomValues": {

"cumulativeCustomValueCount": 376.72,
"averageCustomValuePerEvent": 3.81,
"averageCustomValuePerUser": 0.59,
160 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Basic Event Tracking Reports
"averageCustomValuePerSession": 0.12,
"averageCustomValuePerRuntimeHour": 0.2

}
}

}
},
{

"category": "Print Operations",
"categoryUsageSummary": {

"cumulativeUsageCount": 418,
"averageCountPerUser": 0.65,
"averageCountPerSession": 0.14,
"averageCountPerRuntimeHour": 0

},
"categoryCustomValuesSummary": {

"cumulativeCustomValueCount": 563.37,
"averageCustomValuePerEvent": 1.35,
"averageCustomValuePerUser": 0.88,
"averageCustomValuePerSession": 0.18,
"averageCustomValuePerRuntimeHour": 0

},
"categoryEventsData": {

"Edit Mode": {
"eventUsage": {

"cumulativeUsageCount": 224,
"averageCountPerUser": 0.35,
"averageCountPerSession": 0.07,
"averageCountPerRuntimeHour": 0.12

},
"eventCustomValues": {

"cumulativeCustomValueCount": 149,
"averageCustomValuePerEvent": 0.67,
"averageCustomValuePerUser": 0.23,
"averageCustomValuePerSession": 0.05,
"averageCustomValuePerRuntimeHour": 0.08

}
},
"Preview Mode": {

"eventUsage": {
"cumulativeUsageCount": 141,
"averageCountPerUser": 0.22,
"averageCountPerSession": 0.05,
"averageCountPerRuntimeHour": 0.07

},
"eventCustomValues": {

"cumulativeCustomValueCount": 274,
"averageCustomValuePerEvent": 1.94,
"averageCustomValuePerUser": 0.43,
"averageCustomValuePerSession": 0.09,
"averageCustomValuePerRuntimeHour": 0.14

}
},
"Button Clicked": {

 "eventUsage": {
"cumulativeUsageCount": 52,
"averageCountPerUser": 0.08,
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 161



Chapter 10 Event Tracking Reports
Basic Event Tracking Reports
"averageCountPerSession": 0.02,
"averageCountPerRuntimeHour": 0.03

},
"eventCustomValues": {

"cumulativeCustomValueCount": 139.08,
"averageCustomValuePerEvent": 2.67,
"averageCustomValuePerUser": 0.22,
"averageCustomValuePerSession": 0.05,
"averageCustomValuePerRuntimeHour": 0.07

}
},
"Menu Launched": {

"eventUsage": {
"cumulativeUsageCount": 1,
"averageCountPerUser": 0,
"averageCountPerSession": 0,
"averageCountPerRuntimeHour": 0

},
"eventCustomValues": {

"cumulativeCustomValueCount": 1.29,
"averageCustomValuePerEvent": 1.29,
"averageCustomValuePerUser": 0,
"averageCustomValuePerSession": 0,
"averageCustomValuePerRuntimeHour": 0

}
 }

}
}

]
}

Timeline Report
This report returns a daily/weekly/monthly timeline of how many times each of the requested events occurred. The event 
occurrence counts can optionally be divided by the number of users on each day/week/month, the number of user 
sessions, runtime hours, etc.

• Request/Response Parameters Summary

• Results Format

Request/Response Parameters Summary
POST /reporting/eventTracking/basic/timeline
162 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Basic Event Tracking Reports
The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Results Format
The results object contains a number of members having a date as the key and an object as the value. The date is formatted 
as YYYY-MM-DD regardless of whether the report is being split by day, week, or month. If the report is being split by week or 
by month, the first date of the week or month is used.

Each sub-object contains a sub-object for each event. These contain the event category and name, and the number of 
times it occurred, or the custom numeric value that was sent with it, depending on whether the dataView value is set as 
usageCount or customValues.

Example Request
POST /reporting/eventTracking/basic/timeline HTTP/1.1
Host: api.revulytics.com

Table 10-5 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. Required 
only for non-cookie authentication.

• sessionId (string)—The sessionId obtained via POST /auth/login. Required only 
for non-cookie authentication.

• productId (integer)—The product ID on which this request is being done/

• startDate (string)—The first date of the date range on which to base the report. 
This is to be formatted as YYYY-MM-DD.

• stopDate (string)—The last date of the date range on which to base the report. This 
is to be formatted as YYYY-MM-DD.

• dateSplit (string)—Whether to present results by day, week, or month.

• dataView (string)—Whether to show the counts of the number of times each event 
occurred (usageCount) or the total of the numeric custom values passed with each 
event (customValues).

• divisor (string)—Optional parameter to divide the data by a related value. The 
possible values are users, sessions, runtime, usageCounts. Note that usageCounts 
cannot be selected if dataView is set to usageCount. To get the raw values with no 
divisors, you may leave the divisor property out or set its value to null.

• events (array)—An array containing JSON objects, each containing a 2 string 
values - category and name.

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• results (object)—Contains the results as requested represented as a JSON object. 
The result format is described below.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 163



Chapter 10 Event Tracking Reports
Basic Event Tracking Reports
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 12345678901,
"startDate": "2018-08-01",
"stopDate": "2018-08-03",
"dateSplit": "day",
"dataView": "usageCounts",
"divisor": null,
"events": [

{
"category": "File Operations",
"name": "Open"

},
{

"category": "File Operations",
"name": "Save"

}

]
}

Example Response
HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "OK",
"results": {

"2018-08-01": [
{

"category": "File Operations",
"name": "Open",
"value": 295

},
{

"category": "File Operations",
"name": "Save",
"value": 59

}
],
"2018-08-02": [

{
"category": "File Operations",
"name": "Open",
"value": 132

},
{

"category": "File Operations",
"name": "Save",
"value": 24

}

164 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Advanced Event Tracking Reports
],
"2018-08-03": [

{
"category": "File Operations",
"name": "Open",
"value": 14

},
{

"category": "File Operations",
"name": "Save",
"value": 2

}
]

}
}

Advanced Event Tracking Reports
These reports are meant to provide more insight about how events are used by your users. For events to be available in 
these reports, they must be selected as advanced events in the events management page.

• Event Usage Frequency Report

Event Usage Frequency Report
This report provides a detailed view into how users are using your tracked events. It is available only for events tracked as 
advanced. This report contains data about how many users used each event, many times each event occurred in total, how 
many times each user performed each event on average, etc. It also returns a histogram for each event showing the 
distribution of how many times each user performed each event.

• Request/Response Parameters Summary

• Global Filters

• Data Segmentation

• Events Property

• Results Format

Request/Response Parameters Summary
POST /reporting/eventTracking/advanced/fullReport
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 165



Chapter 10 Event Tracking Reports
Advanced Event Tracking Reports
The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Global Filters
Most of the available filter properties are string-based. This means that when applying a filter, the requested field can be 
represented as a string, stringArray or regex. There are also some filters which are numeric. These filters should be 
represented as number or numberRange.

• String-Based Filters

Table 10-6 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. Required 
only for non-cookie authentication.

• sessionId (string)—The sessionId obtained via POST /auth/login. Required only for 
non-cookie authentication.

• productId (integer)—The product ID on which this request is being done.

• startDate (string)—The first date of the date range on which to base the report. 
This is to be formatted as YYYY-MM-DD.

• stopDate (string)—The last date of the date range on which to base the report. This 
is to be formatted as YYYY-MM-DD.

• globalFilters (object)—JSON object containing the filters to be applied to the 
available data. Details about these filters can be found in Global Filters.

• segmentBy (string)—The field with which to segment the data. Details about 
segmentation can be found in the Data Segmentation.

• segments (array)— Optional JSON array that describes how data is to be split into 
segments. Refer to Data Segmentation.

• sort (string)—Optional property to specify how the segments are to be sorted. 
Possible values are alpha or eventCounts. If this property is not included, the data is 
sorted alphabetically by default.

• sortDirection (string)—Optional property to specify whether to sort in ascending 
or descending order. Possible values are asc and desc. If not specified, data is 
sorted in ascending order by default.

• events (array)—Array of objects specifying which events or combination of events 
to base the report on. Please refer to Events Property.

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• results (array)—Present only if status is OK. Contains the list of available properties 
as described below.
166 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Advanced Event Tracking Reports
• Numeric Filters

• Date Range Filters

• Boolean Filters

• Special Filters

• <NULL> Values in Global Filters

String-Based Filters
The following properties are stored as strings:

machineId *
clientId *
prodVersion
prodEdition
prodBuild
prodLanguage
licenseType
formFactor *
osLanguage
osWordLength *
cpuType *
dotNetVersion *
javaVersion *
javaVendor *
javaRuntime *
javaGraphics *
javaVmVersion *
javaVmName *
vm *
C01 .. C20 (Custom properties)
licenseKey *

Important •  licenseKey requires a special user permission to filter by license key.

Note • Properties marked with an asterisk (*) are based on the current (latest known) values.

The type field in the above filters needs to be string, stringArray or regex. A value field is always required. The contents 
of this field should be according to the specified type. 

• If string is specified, then the value field must contain a single string that needs to be matched precisely with the 
stored data. 

• If stringArray is specified, then the value field must contain an array of strings where one of which needs to match 
precisely with the stored data. 

• If specifying a regex, the value field should contain a string which is treated as a regular expression and the stored 
data will be matched against it using regular expression rules.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 167



Chapter 10 Event Tracking Reports
Advanced Event Tracking Reports
Example Filter Using a String Value

In this example, the product build value needs to be exactly “3014.int-12214”:

{
"prodBuild":

{
"type": "string",
"value": "3014.int-12214"

}
 }

Example Filter Using a String Array

In this example, the product build value needs to be either “3014.int-12214”, “3017.enx-57718”, or “4180.vrx-81059”. Note 
that since the type is declared as stringArray, the value field needs to contain an array. Consider all elements in the array to 
have an OR logical expression between them.:

{
"prodBuild":

{
"type": "stringArray",
"value": ["3014.int-12214", "3017.enx-57718", "4180.vrx-81059"]

}
}

Example Filter Using a Regular Expression

In this example, the product build value needs to start with “30” and end with “18” whilst having 10 characters in between:

{
 "prodBuild":

 {
 "type": "regex",
 "value": "^30.{10}18$"

 }
}

Numeric Filters
The following properties are stored as numeric values:

cpuCores *
displayCount *
ram *
resolutionWidth *
resolutionHeight *
lifetimeRuntimeMinutes *
lifetimeSessionCount *
screenPpi *
javaVmRam *

Note • Properties marked with an asterisk (*) are based on the current (latest known) values.

The type field in the above filters needs to be number or numberRange. 
168 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Advanced Event Tracking Reports
• If number is specified, then a value field must also be present. The value field should contain a number, which may 
contain a decimal point if required. 

• If numberRange is specified, then the value field should NOT be used. Instead, the properties min and max are to be 
used. These refer to the minimum and maximum number to be included in the report. If only one limit needs to be set, 
the other property is to be left out. Therefore, if you want to include installations with up to 2 display devices, you 
would not specify a min value, but instead specify only a max and set it as 2.

Example Filter Using a Number Value

In this example, the number of display devices needs to be exactly 3:

{
"displayCount":

{
"type": "number",
"value": 3

}
 }

Example Filter Using a Number Value

In this example, the RAM needs to be between 1025MB and 4096MB (both included):

{
"ram":

{
"type": "numberRange",
"min": 1024,
"max": 4096

}
 }

Date Range Filters
The following properties are stored as dates:

dateInstalled
dateLastSeen

The type field in the above filters needs to be date or dateRange. 

• If date is specified, then a value field must also be present. The value field should contain a date. 

• If dateRange is specified, then the value field should NOT be used. Instead, the properties min and max are to be used. 
These refer to the minimum and maximum dates to be included in the report. If only one limit needs to be set, the 
other property is to be left out. In the following example, users installed after January 1st 2018 are to be shown:

{
"dateInstalled":

{
"min": "2018-01-01"

}
}

Note that all dates must be in ISO 8601 format.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 169



Chapter 10 Event Tracking Reports
Advanced Event Tracking Reports
Boolean Filters
The following property is stored as boolean:

touchScreen

The type field in the above filters needs to be boolean. The value must be true or false. In the following filter, clients with a 
touch screen are being requested.

{
"touchScreen":

{
"type": "boolean",
"value": true

}
}

Special Filters
Some filters need to be represented in a special format due to their unique requirements. These special filters are:

• Special Filter: licenseStatus

• Special Filter: os

• Special Filter: geography

• Special Filter: gpu

• Special filters: optOut and backOff

• Special Filter: lifetimeEventUsage

• Special Filter: reachOutDeliveries

Special Filter: licenseStatus

The licenseStatus filter is made up of 4 sub-values: activated, blocked, expired and allowed. These are presented as 
boolean values. Unlike other filters, this filter is presented as an array of JSON objects. Each object can contain a subset (or 
all) of these 4 boolean values. 

Consider the following example. In this example, for a client to be included, the license has to either be activated AND 
allowed, or else it can be not allowed AND expired. In other words, ( (activated AND allowed) OR ((NOT)allowed AND 
expired) ).

{
"licenseStatus":

[
{

"activated": true,
"allowed": true

},
{

"allowed": false,
"expired": true

}
]

}

170 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Advanced Event Tracking Reports
Special Filter: os

The os filter is made up of 3 granularity levels. These are platform, version, and edition. These are meant to split the OS 
name into levels of detail as required by the user. Consider the following:

• platform: Microsoft Windows

• version: Microsoft Windows 7

• edition: Microsoft Windows 7 Professional

If a filter is set on the version “Microsoft Windows 7”, the result would include all editions of Windows 7. One or more of 
these granularity levels may be specified. If more than 1 granularity level is specified, the values are ORed together.

In the following example, all editions of “Microsoft Windows 7” are included, and also “Microsoft Windows Vista Home 
Premium”:

{
"type": "string",
"version": "Microsoft Windows 7",
"edition": "Microsoft Windows Vista Home Premium"

}

In the following example, the type is stringArray. Note that an array needs to be passed if the type is set as such, even if it 
is to contain only 1 element. In this case, the version can be either “Microsoft Windows 7” or “Microsoft Windows 8” (which 
are ORed together). Also, clients running on “Microsoft Windows XP Professional” are to be included.

{
"type": "stringArray",
"version": ["Microsoft Windows 7", "Microsoft Windows 8"],
"edition": ["Microsoft Windows XP Professional"]

}

Special Filter: geography

The geography filter is made up of 3 granularity levels. These are continent, country, and usState. 

The usState value applies only to United States. Continents and countries are presented in 2-letter codes. Countries follow 
ISO standard 3166-1 alpha-2. US states are presented in ISO 3166-2:US format.

In the following example, the clients have to be either:

• In the continents Asia or Oceania

• In the country Germany

• In the US states New York, New Jersey, or Kansas

{
"type": "stringArray",
"continent": ["AS", "OC"],
"country": ["DE"],
"usState": ["US-NY", "US-NJ", "US-KS"]

}

Important • In this filter, the type can be string or stringArray. Regular expressions are not supported in geography filters.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 171



Chapter 10 Event Tracking Reports
Advanced Event Tracking Reports
Special Filter: gpu

The gpu filter is made up of 2 granularity levels. These are vendor and model. Both are represented as string values.

In the following example, the clients have to have a GPU:

• From the vendors NVIDIA or Intel

• With the model AMD Radeon HD 4600

{
"type": "stringArray",
"vendor": ["NVIDIA", "Intel"],
"model": ["AMD Radeon HD 4600"]

}

Special filters: optOut and backOff

The opt-out mechanism was introduced in SDK version 5.1.0. With this feature, vendors can have their application report to 
the Usage Intelligence servers that a user does not want to be tracked. Using this property, vendors can filter out 
installations that were opted-out. 

Similarly, backoff filtering was introduced with version 5.0.0. Backoff is when a product account runs over-quota and the 
server starts rejecting data. Although filtering for backed-off installations was introduced with version 5, it was also 
backported to previous versions. However, when a new installation with an SDK prior to version 5 tries to register with the 
server and is rejected, it is not marked as being once backed-off when it is eventually accepted by the server. With version 5 
onwards, the server flags an installation as being historically backed-off in such cases.

Both backOff and optOut filters are made up of 2 boolean sub-values: historical and current. 

• The historical value refers to installations that were once backed-off or opted-out. These may include installations 
that are still currently backed-off or opted-out. 

• The current value refers to the status during the last time that the client called the server. Therefore, if an installation 
was opted-out yesterday but got opted-in today, it will be marked as historically opted-out but not currently opted-
out.

In the following example, for a client to be included, the optOut status has to either be historical AND not current, or 
else it can be not historical (i.e. users have to be currently opted-in but used to be opted-out at some point or never 
opted out).

{
"optOut":

[
{

"historical": true,
"current": false

},
{

"historical": false
}

]
}

172 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Advanced Event Tracking Reports
Special Filter: lifetimeEventUsage

Using lifetime event usage filters, clients can be filtered based on whether a particular event or set of events occurred or 
not within the client’s lifetime. Alternatively, one can set a filter based on the number of times an event has occurred.

In the following example, clients that are included must have done the “File Operations - Open” event at least 5 times to be 
counted.

{
 "category": "File Operations",
 "name": "Open",
 "min": 5

}

In the following example, clients must have done either “File Operations - Open” or “File Operations - Save” for a combined 
total of between 10 to 50 times.

{
"combiArray": [

 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Open"

 },
 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Save",

 }
],

"min": 10,
"max": 50

}

In the following example, clients must have done any event within the “File Operations” category for a combined total of 
not more than 100 times. This is done using a regular expression in the name.

{
"combiArray": [

{
"categoryType": "string",
"nameType": "regex",
"category": "File Operations",
"name": ".*"

}
 ],

"max": 100
}

Special Filter: reachOutDeliveries

Using ReachOut delivery filters, clients can be filtered based on whether a particular ReachOut message or a combination 
of ReachOut messages were delivered or not within the client’s lifetime.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 173



Chapter 10 Event Tracking Reports
Advanced Event Tracking Reports
The filter consists of a JSON array that includes one or more objects. Each object is a combination of delivered and 
undelivered campaigns, and the different combinations are ORed together. Therefore, it is possible to show users that 
either received ReachOut message 1 but not 2, or else received 3 but not 4 as in the following example:

In the following example, we are looking for clients who either received campaign 1 but not 2, OR received campaign 2 but 
not 3.

[
 {"auto": {"delivered": ["1"], "undelivered":["2"]}},
 {"auto": {"delivered": ["2"], "undelivered":["3"]}}

]

The above example contains only “auto” ReachOut campaigns. Manual campaigns can be specified using “manual” 
instead of “auto” as in the above example. Each object can contain a mix of “auto” and “manual” campaigns.

<NULL> Values in Global Filters
Most of the available properties can include null values. There are different reasons why a value would be null. When these 
are properties that are set by the application, the possible reasons why a value would be null are cases where the value has 
not been set by the application (such as prodBuild never being set), and cases where values are set to an empty string (“”) 
or to a string containing “<NULL>”. 

One other reason is that although these values have been set, the SDK has not yet had time to sync with the servers to 
provide this new information. In cases where the properties are set automatically such as hardware or OS related 
information, the values would be null if the SDK failed to retrieve that value from the OS or if the server failed to identify the 
value retrieved by the SDK. Other reasons include cases where Java version is requested from an application that does not 
use the Java SDK, US state is requested for users who are not running within the US, etc.

The following are the properties that support null values:

prodVersion
prodEdition
prodBuild
prodLanguage
machineId
formFactor
vm
cpuType
cpuCores
ram
resolutionWidth
resolutionHeight
javaVersion
javaVmVersion
javaVmName
javaVendor
javaRuntime
javaGraphics
osLanguage
licenseKey
C01 .. C20 (Custom properties)
os
geography
gpu

Null values can be requested either on their own or as part of a filter containing other values.
174 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Advanced Event Tracking Reports
The following example would return only cases where the prodVersion is null:

{
"prodVersion":

{
"includeNull": true

}
}

The following example would return cases where the prodVersion is either 1.1, 1.2 or null:

{
"prodVersion":

{
"type": "stringArray",
"value": ["1.1", "1.2"],
"includeNull": true

}
}

By default, when specifying a filter, null values would not be included. Therefore, in the following example, only clients 
with prodVersion set to 1.1 or 1.2 will be included, while null values are excluded:

{
"prodVersion":

{
"type": "stringArray",
"value": ["1.1", "1.2"]

}
}

However, if no filter is specified, then nulls are included by default. Therefore, if you want to include any value of 
prodVersion as long as it is not null, a prodVersion filter needs to be included as follows:

{
"prodVersion":

{
"type": "regex",
"value": ".*",
"includeNull": false

}
}

In the case of filters that use sub-properties (os, geography, and gpu), the includeNull filter is to be included in the sub-
property and applies to that specific sub-property only. In order to be able to include the includeNull property, instead of 
providing the value as a string or an array of strings, the value of the sub-property must be a JSON object that contains a 
property named “value”, and another named “includeNull”. Each of these properties is optional, but at least one of them 
must be present.

In the case of geography, this has a very particular meaning. Requesting for null “country” value does not return all cases 
where the country could not be retrieved, but only cases where the continent could be retrieved but the country could not. 
Similarly, requesting null “usState” returns cases where the continent and country could be retrieved but the US state 
could not. This does not include clients that are not situated in the US. If you are interested in finding clients where we 
could not detect any geographical data, the includeNull filter needs to be applied in the continent sub-property.

In the following example, we are requesting cases where we know that the client is within the US but the state could not be 
identified:
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 175



Chapter 10 Event Tracking Reports
Advanced Event Tracking Reports
{
"geography":

{
"type": "string",
"country": "US",
"usState":

{
"includeNull": true

}
}

}

In the following example, we are requesting cases where the GPU is either “NVIDIA”, “AMD” or null (unidentified):

{
"gpu":

{
"type": "stringArray",
"vendor":

{
"value": ["NVIDIA", "AMD"],
"includeNull": true

}
}

}

Data Segmentation
Optionally, data may be segmented by 1 level. When using segmentation, events data is split based on the segment 
property requested. In order to select a segmentation property, specify any metadata property in the segmentBy field. The 
way segments are to be generated must be specified in the segments field. The segments field should contain a JSON array 
containing objects with the following properties:

Table 10-7 • Data Segmentation Properties

Property Description

type (string) The data type of the value. Can be string, stringArray, regex, number or 
numberRange based on whether the property is string-based or numeric.

value (string/array/number) An exact string, an array of strings, a regular expression or a numeric value. This 
property should not be used if type is numberRange. Format is based on whether 
the property is string-based or numeric.

min (number) Used only if the type is numberRange. Contains the minimum numeric value to 
include in this segment. May be combined with max.

max (number) Used only if the type is numberRange. Contains the maximum numeric value to 
include in this segment. May be combined with min.
176 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Advanced Event Tracking Reports
Information about Data Segmentation are presented in the following topics:

• String-Based Segmentation Properties

• Numeric Segmentation Properties

• Boolean Segmentation Properties

• Special Segmentation Properties

• <NULL> Values for Data Segmentation

String-Based Segmentation Properties
The following properties are stored as strings:

machineId *
clientId *
prodVersion
prodEdition
prodBuild
prodLanguage
licenseType
formFactor *
osLanguage
osWordLength *
cpuType *
javaVersion *
javaVendor *
javaRuntime *
javaGraphics *
javaVmVersion *
javaVmName *
vm
C01 .. C20 (Custom properties)
licenseKey * **

split (boolean) Used only if the type is stringArray or regex. This specifies whether to split the 
returned data based on each different value matched by the regular expression or 
array (true), or to join all the clients that match the value as 1 table value or series 
(false).

segmentLabel (string) Used only if split is false or if type is numberRange. This is required to give a name 
to a series when not splitting by value. It is important that the name given is 
unique.

limit (integer) Optional property to set the limit on the maximum number of table values or 
series that should be produced by this set of values. To be used only if split is true.

Table 10-7 • Data Segmentation Properties

Property Description
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 177



Chapter 10 Event Tracking Reports
Advanced Event Tracking Reports
Important • licenseKey requires a special user permission to be used for segmentation.

Note • Properties marked with an asterisk (*) are based on the current (latest known) values.

The type field when using one of the above properties needs to be string, stringArray or regex. A value field is always 
required. The contents of this field should be according to the specified type. If string is specified, then the value field must 
contain a single string that needs to be matched precisely with the stored data. If stringArray is specified, then the value 
field must contain an array of strings where one of which needs to match precisely with the stored data. If specifying a 
regex, the value field should contain a string which is treated as a regular expression and the stored data will be matched 
against it using regular expression rules.

Example using segmentation by string, stringArray, and regex values

{
"segmentBy": "prodVersion",
"segments": [

{
"type": "string",
"value": "1.0"

},
{

"type": "stringArray",
"value": ["2.0", "2.1", "3.1"],
"split": false,
"segmentLabel": "Versions 2 and 3"

},
{

"type": "regex",
"value": "^4\..*",
"split": false,
"segmentLabel": "All version 4"

},
{

"type": "regex",
"value": "^5\..*",
"split": true

}
]

}

In the above example, we are requesting a report with multiple segments. The first segment contains installations running 
version 1.0. Notice how this does not require a “split” property since there is only 1 value and therefore no further splitting 
is possible. The second segment contains versions 2.0, 2.1 and 3.1. In this case, the “split” property is required, and since 
we are requesting the API to combine these 3 versions, we must provide a “segmentLabel” value so that the returned data 
can be identified. The third segment is similar, although in this case the request is built using a regular expression. In this 
case, all versions starting with “4.” are to be included into one combined segment.

The last segment is different from the rest because we are requesting the API to split the data (split is set to true). 
Therefore, this can produce much more than 1 segment. In this case, we could see segments such as “5.1”, “5.2”, etc. 
Notice how since we are splitting, we should not provide a segmentLabel value since the labels are built using the different 
values that are found in the data.
178 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Advanced Event Tracking Reports
Numeric Segmentation Properties
The following properties are stored as numeric values:

cpuCores
displayCount
ram
resolutionWidth
resolutionHeight
lifetimeRuntimeMinutes
lifetimeSessionCount
screenPpi
javaVmRam

The type field in the above properties needs to be number or numberRange. If number is specified, then a value field must 
also be present. The value field should contain a number, which may contain a decimal point if required. If numberRange is 
specified, then the value field should NOT be used. Instead, the properties min and max are to be used. These refer to the 
minimum and maximum number to be included in the report. If only one limit needs to be set, the other property is to be 
left out. Therefore, if you want to include installations with up to 2 display devices, you would not specify a min value, but 
instead specify only a max and set it as 2.

Example using segmentation by number, and numberRange values

{
"segmentBy": "cpuCores",
"segments": [

{
"type": "number",
"value": 1,

},
{

"type": "numberRange",
"min": 2,
"max": 4,
"segmentLabel": "2 - 4"

},
{

"type": "numberRange",
"min": 5,
"segmentLabel": "5 +"

}
]

}

In the above example, we are requesting a report with 3 segments. The first segment contains only installations running on 
1 CPU core, the second segments contains installations running on 2, 3, or 4 cores (range 2 - 4), while the last segment 
contains all installations which are running on a machine with 5 or more CPU cores. Note how when the type was 
numberRange, we had do specify a segmentLabel which is a free string that will be used by the user to identify what is being 
included in that specific segment.

Boolean Segmentation Properties
The following properties are stored ad boolean values:

touchScreen
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 179



Chapter 10 Event Tracking Reports
Advanced Event Tracking Reports
The type field needs to be boolean, and the value must be true or false. A segmentLabel field is also required

The following example requests data segmented by touchScreen:

{
"segmentBy": "touchScreen",
"segments": [

{
"type": "boolean",
"value": true,
"segmentLabel": "Yes"

},
{

"type": "boolean",
"value": false,
"segmentLabel": "No"

},
{

"includeNull": true,
"segmentLabel": "Unknown"

}
]

}

In the above example, we are requesting a report with 3 segments. The first segment contains installations on which a 
touch screen was detected, the second one where no touch screen has been detected, while the last one is where we could 
not detect whether a touch screen is present due to the client using an old SDK which did not have touch screen detection 
support.

Special Segmentation Properties
Some properties need to be represented in a special format due to their unique requirements. These special properties are:

• Special Segmentation Format: licenseStatus

• Special Segmentation Format: os

• Special Segmentation Format: geography

• Special Segmentation Format: gpu

• Special Segmentation Format: optOut and backOff

Special Segmentation Format: licenseStatus

The licenseStatus value is made up of 4 sub-values: activated, blocked, expired and allowed. These are presented as 
boolean values. Any number of segments can be defined, and each segment can contain any subset of the 4 sub-values. 
These values are ANDed together. A segmentLabel value is required.

In the following example, 2 segments are specified - the first one showing blocked AND not expired and the second one 
showing allowed AND activated:

[
{

"segmentLabel": "BL and not EXP",
"blocked": true,
"expired": false
180 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Advanced Event Tracking Reports
},
{

"segmentLabel": "WL and ACT",
"allowed": true,
"expired": true

}
]

Special Segmentation Format: os

The os value is made up of 3 granularity levels - platform, version, and edition. A particular level needs to be selected, 
and this is to be included in the property name such as os.version or os.edition. For a description of the differences 
between the 3 granularity levels, refer to the os special filter section.

The following example requests data segmented by all OS versions:

{
"segmentBy": "os.version",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

}

In the above example, no filtering is being done, and instead, a regular expression to include everything is set as the value. 
This will result in all OS versions to be returned.

Special Segmentation Format: geography

The geography value is made up of 3 granularity levels - continent, country, and usState. These granularity levels are 
explained in the geography special filter section. A particular level needs to be selected, and this is to be included in the 
property name such as geography.continent or geography.country.

The following example requests data segmented by all countries:

{
"segmentBy": "geography.country",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

}

In the above example, no filtering is being done, and instead, a regular expression to include everything is set as the value. 
This will result in all countries to be returned.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 181



Chapter 10 Event Tracking Reports
Advanced Event Tracking Reports
Special Segmentation Format: gpu

The gpu value is made up of 2 granularity levels - vendor and model. These granularity levels are explained in Special Filter: 
gpu. A particular level needs to be selected, and this is to be included in the property name, namely gpu.vendor or 
gpu.model.

The following example requests data segmented by all GPU vendor:

{
"segmentBy": "gpu.vendor",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

}

In the above example, no filtering is being done, and instead, a regular expression to include everything is set as the value. 
This will result in all the GPU vendors to be returned.

Special Segmentation Format: optOut and backOff

Both backOff and optOut values are made up of 2 boolean sub-values: historical and current. Any number of segments 
can be defined, and each segment can contain any subset of the 2 sub-values. These values are ANDed together. A 
segmentLabel value is required.

In the following example, 2 segments are specified - the first one showing historical AND not current and the second one 
showing not historical (i.e. never opted-out):

[
{

"segmentLabel": "HISTORICAL and not CURRENT",
"historical": true,
"current": false

},
{

"segmentLabel": "Never opted-out",
"historical": false

}
]

<NULL> Values for Data Segmentation
Null values in segmentation are to be requested in a similar way to null values in filters. The same properties that support 
null in filtering also support null in segmentation.

By default, when segmenting, null values are not included within the segments, since only the values that have been 
specified in each segment are included. Null values don’t match any regular expression, so the only way to request null 
values to be included is to specify “includeNull” as true in a similar way to filtering. In segmentation, null values are 
returned as “<NULL>”. The API considers all cases where the data has never been set from the SDK, set as an empty string, 
or set as a string containing “<NULL>” to be the same.

The following example requests all values of prodBuild including null:
182 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Advanced Event Tracking Reports
{
"level1": {

"property": "prodBuild",
"segments": [

{
"type": "regex",
"value": ".*",
"includeNull": true

}
]

}
}

In the case of segmentation properties that use sub-properties (os, geography, and gpu), the includeNull value is to be 
included in the sub-property and applies to that specific sub-property only. In order to be able to include the includeNull 
property, instead of providing the value as a string or an array of strings, the value of the sub-property must be a JSON 
object that contains a property named “value”, and another named “includeNull”. Each of these properties is optional, 
but at least one of them must be present. The same rules that apply for filtering these types of properties for null values 
also apply to segmentation.

In the following example, we are requesting segmentation by continent and are also requesting the number of clients 
where we could not detect the geographical location:

{
"level1": {

"property": "geography",
"segments": [

{
"type": "regex",
"continent": {

 "value": ".*",
 "includeNull": true

 }
}

]
}

}

Events Property
This property should be formatted as an array of objects. In each object, one must specify either a single event or a 
combination of events.

To specify a single event, the inner object should look like the following example:

{
 "category": "File Operations",
 "name":"Open"

}

To specify a combination of events, the inner object should look like the following:

{
 "combiLabel": "Open and Save",
 "combiArray": [

 {
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 183



Chapter 10 Event Tracking Reports
Advanced Event Tracking Reports
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Open"

 },
 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Save",

 }
]

}

In the above example, we are combining the data from the Open and Save events, both under the File Operations category. 
In this example, “string” is being used both as categoryType and nameType. The other possible value is “regex”. The 
following example shows a case where all events under the File Operations category are being combined:

{
 "combiLabel": "All File Operations",
 "combiArray": [

 {
 "categoryType": "string",
 "nameType": "regex",
 "category": "File Operations",
 "name": ".*"

 }
]

}

The combiLabel property should contain any user-friendly unique string value to identify each events combination.

Results Format
If segmentation is not being used, the results are presented in an array of objects. Each object inside the array represents 
an event or a combination of events as requested. If segmentation is used, the data is presented as a JSON object. This 
object would contain an element for each segment, where the key would be the segment name, and the value would be an 
array containing event data as described above.

The inner objects inside the array/s contain the following elements:

• eventCounts—The total number of recorded occurrences of this event

• averageEventCountPerSessionUsedAtLeastOnce—The average number of event occurrences per runtime session 
from installations which performed this event at least once within the specified date range

• averageEventCountPerSessionAll—The average number of event occurrences per runtime session from all 
installations (including installations who did not perform this event)

• averageEventCountPerUserAtLeastOnce—The average number of event occurrences per installations which 
performed this event at least once within the specified date range

• averageEventCountPerUserAll —The average number of event occurrences per installation (including installations 
who did not perform this event)
184 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 10 Event Tracking Reports
Advanced Event Tracking Reports
• uniqueUsersUsedAtLeastOnce—The number of unique installations/users who used this event at least once within 
the specified date range

• uniqueUsersNeverUsed —The number of unique installations/users who never used this event within the specified 
date range

• usageFrequency—Histogram data showing the number of times the event occurred by how many users.

In the example below, no segmentation is being used. As described above, when segmentation is used, the results are 
presented in an object which contains an element for each segment having an array in the same format as below as the 
value.

Example Request
POST /reporting/eventTracking/advanced/fullReport HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 12345678901,
"startDate": "2018-10-01",
"stopDate": "2018-12-31",
"events": [

{
"category": "File Operations",
"name":"Open"

},
{

"category": "File Operations",
"name":"Save"

}
]

}

Example Response
HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "OK",
"segmentBy": null,
"results": {

"detailedReport": [{
"category": "File Operations",
"name": "Save",
"data": {

"eventCounts": 81223,
"averageEventCountPerSessionUsedAtLeastOnce": 0.35,
"averageEventCountPerSessionAll": 0.28,
"averageEventCountPerUserAtLeastOnce": 27.46,
"averageEventCountPerUserAll": 22.85,
"uniqueUsersUsedAtLeastOnce": 2958,
"uniqueUsersNeverUsed": 596,
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 185



Chapter 10 Event Tracking Reports
Advanced Event Tracking Reports
"usageFrequency": {
"1 - 5": 314,
"6 - 10": 352,
"11 - 15": 334,
"16 - 20": 315,
"21 - 25": 292,
"26 - 30": 316,
"31 - 35": 257,
"36 - 40": 214,
"41 - 45": 142,
"46 - 50": 116,
"51 - 60": 98,
"61 - 70": 51,
"\u2265 71": 157

}
}

}, {
"category": "File Operations",
"name": "Open",
"data": {

"eventCounts": 211161,
"averageEventCountPerSessionUsedAtLeastOnce": 0.73,
"averageEventCountPerSessionAll": 0.73,
"averageEventCountPerUserAtLeastOnce": 59.7,
"averageEventCountPerUserAll": 59.42,
"uniqueUsersUsedAtLeastOnce": 3537,
"uniqueUsersNeverUsed": 17,
"usageFrequency": {

"1 - 5": 192,
"6 - 10": 232,
"11 - 15": 211,
"16 - 20": 221,
"21 - 25": 210,
"26 - 30": 177,
"31 - 35": 178,
"36 - 40": 169,
"41 - 45": 153,
"46 - 50": 120,
"51 - 60": 252,
"61 - 70": 211,
"71 - 80": 173,
"81 - 90": 184,
"91 - 100": 156,
"101 - 110": 135,
"111 - 120": 107,
"121 - 130": 94,
"131 - 140": 69,
"141 - 150": 79,
"\u2265 151": 214

}
}

}]
}

}

186 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



11

Churn-Related Reports
This collection of reports is meant to provide insight on the lifetime of lost users. These reports are meant to report what 
happened during the whole lifetime of these installations rather than what happened during a defined date range.

• Churn and Engagement Report

• Runtime Activity Reports for Lost Installations

• Churned User Activity Reports

Churn and Engagement Report
This report shows how new installations during the specified date range were engaged or lost during their lifetime. This 
report does not only show users who were reported lost, but instead, all users who installed during the specified date 
range are included. By viewing this report, one can then see how many users were still active/engaged after x days/weeks/
months.

• Request/Response Parameters Summary

• Global Filters

• Segmentation

• Results Format

Request/Response Parameters Summary
POST /reporting/engagement/churnAndEngagement
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 187



Chapter 11 Churn-Related Reports
Churn and Engagement Report
The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Global Filters
Most of the available filter properties are string-based. This means that when applying a filter, the requested field can be 
represented as a string, stringArray or regex. There are also some filters which are numeric. These filters should be 
represented as number or numberRange.

The standard filters are based on the value recorded on the install date. Therefore, if a user installed version 1 of the 
application and then switched to version 2, that particular installation is considered as version 1. However, currentData 
filters (marked with *) are based on the current (last known) values.

• String-Based Filters

• Numeric Filters

Table 11-1 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. Required 
only for non-cookie authentication.

• sessionId (string)—The sessionId obtained via POST /auth/login. Required only 
for non-cookie authentication.

• productId (integer)—The product ID on which this request is being done

• startDate (string)—The first date of the date range on which to base the report. 
This is to be formatted as YYYY-MM-DD.

• stopDate (string)—The last date of the date range on which to base the report. This 
is to be formatted as YYYY-MM-DD.

• daysUntilDeclaredLost (integer)—This specifies the number of consecutive days 
of inactivity that have to pass until a client installation is declared lost.

• dateSplit (string) – Whether to present results by day, week, or month.

• globalFilters (object)—JSON object containing the filters to be applied to the 
available data. Details about these filters can be found in the Global Filters section.

• segmentBy (string)—The field with which to segment the data. Details about 
segmentation can be found in the Segmentation section.

• segments (string)—Used to specify how data is to be segmented. Must be used in 
conjunction with segmentBy. Details about segmentation can be found in the 
Segmentation section.

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• results (object)—Contains the results as requested represented as a JSON object. 
The result format is described below.
188 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churn and Engagement Report
• Date Range Filters

• Boolean Filters

• Special Filters

• <NULL> Values in Global Filters

String-Based Filters
The following properties are stored as strings:

machineId *
clientId *
prodVersion
prodEdition
prodBuild
prodLanguage
licenseType
formFactor *
osLanguage
osWordLength *
cpuType *
dotNetVersion *
javaVersion *
javaVendor *
javaRuntime *
javaGraphics *
javaVmVersion *
javaVmName *
vm *
C01 .. C20 (Custom properties)
licenseKey *

Note • licenseKey requires a special user permission to be used as a filter.

Note • Properties marked with an asterisk (*) are based on the current (latest known) values.

The type field in the above filters needs to be string, stringArray or regex. A value field is always required. The contents 
of this field should be according to the specified type. 

• If string is specified, then the value field must contain a single string that needs to be matched precisely with the 
stored data. 

• If stringArray is specified, then the value field must contain an array of strings where one of which needs to match 
precisely with the stored data. 

• If specifying a regex, the value field should contain a string which is treated as a regular expression and the stored 
data will be matched against it using regular expression rules.

Example Filter Using a String Value

In this example, the product build value needs to be exactly “3014.int-12214”:
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 189



Chapter 11 Churn-Related Reports
Churn and Engagement Report
{
"prodBuild":

{
"type": "string",
"value": "3014.int-12214"

}
}

Example Filter Using a String Array

In this example, the product build value needs to be either “3014.int-12214”, “3017.enx-57718”, or “4180.vrx-81059”. Note 
that since the type is declared as stringArray, the value field needs to contain an array. Consider all elements in the array 
to have an OR logical expression between them.:

{
"prodBuild":

{
"type": "stringArray",
"value": ["3014.int-12214", "3017.enx-57718", "4180.vrx-81059"]

}
}

Example Filter Using a Regular Expression

In this example, the product build value needs to start with “30” and end with “18” whilst having 10 characters in between:

{
 "prodBuild":

 {
 "type": "regex",
 "value": "^30.{10}18$"

 }
}

Numeric Filters
The following properties are stored as numeric values:

cpuCores *
displayCount *
ram *
resolutionWidth *
resolutionHeight *
lifetimeRuntimeMinutes *
lifetimeSessionCount *
screenPpi *
javaVmRam *

Note • Properties marked with an asterisk (*) are based on the current (latest known) values.

The type field in the above filters needs to be number or numberRange. 

• If number is specified, then a value field must also be present. The value field should contain a number, which may 
contain a decimal point if required. 
190 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churn and Engagement Report
• If numberRange is specified, then the value field should NOT be used. Instead, the properties min and max are to be 
used. These refer to the minimum and maximum number to be included in the report. If only one limit needs to be set, 
the other property is to be left out. Therefore, if you want to include installations with up to 2 display devices, you 
would not specify a min value, but instead specify only a max and set it as 2.

Example Filter Using a Number Value

In this example, the number of display devices needs to be exactly 3:

{
"displayCount":

{
"type": "number",
"value": 3

}
}

Example Filter Using a Number Range Value

In this example, the RAM needs to be between 1025MB and 4096MB (both included):

{
"ram":

{
"type": "numberRange",
"min": 1025,
"max": 4096

}
}

Date Range Filters
The following properties are stored as dates:

dateInstalled
dateLastSeen

The type field in the above filters needs to be date or dateRange. 

• If date is specified, then a value field must also be present. The value field should contain a date. 

• If dateRange is specified, then the value field should NOT be used. Instead, the properties min and max are to be used. 
These refer to the minimum and maximum dates to be included in the report. If only one limit needs to be set, the 
other property is to be left out. 

In the following example, users installed after January 1st 2018 are to be shown:

{
 "dateInstalled":

 {
 "type": "dateRange", 
"min": "2018-01-01"

 }
}

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 191



Chapter 11 Churn-Related Reports
Churn and Engagement Report
Note • All dates must be in ISO 8601 format.

Boolean Filters
The following property is stored as boolean:

touchScreen

The type field in the above filters needs to be boolean. The value must be true or false. In the following filter, clients with a 
touch screen are being requested.

{
"touchScreen":

{
"type": "boolean",
"value": true

}
}

Special Filters
Some filters need to be represented in a special format due to their unique requirements. These special filters are:

• Special Filter: licenseStatus

• Special Filter: os

• Special Filter: geography

• Special Filter: gpu

• Special Filters: optOut and backOff

• Special Filter: lifetimeEventUsage

• Special Filter: reachOutDeliveries

Special Filter: licenseStatus
The licenseStatus filter is made up of 4 sub-values: activated, blocked, expired and allowed. These are presented as 
boolean values. 

Unlike other filters, this filter is presented as an array of JSON objects. Each object can contain a subset (or all) of these 4 
boolean values. 

Consider the following example. In this example, for a client to be included, the license has to either be activated AND 
allowed, or else it can be not allowed AND expired. In other words, ( (activated AND allowed) OR ((NOT)allowed AND 
expired) ).

{
"licenseStatus":

[
{

192 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churn and Engagement Report
"activated": true,
"allowed": true

},
{

"allowed": false,
"expired": true

}
]

}

Special Filter: os
The os filter is made up of 3 granularity levels. These are platform, version, and edition. These are meant to split the OS 
name into levels of detail as required by the user. Consider the following:

• platform: Microsoft Windows

• version: Microsoft Windows 7

• edition: Microsoft Windows 7 Professional

If a filter is set on the version “Microsoft Windows 7”, the result would include all editions of Windows 7. One or more of 
these granularity levels may be specified. If more than 1 granularity level is specified, the values are ORed together.

In the following example, all editions of “Microsoft Windows 7” are included, and also “Microsoft Windows Vista Home 
Premium”:

{
"type": "string",
"version": "Microsoft Windows 7",
"edition": "Microsoft Windows Vista Home Premium"

}

In the following example, the type is stringArray. Note that an array needs to be passed if the type is set as such, even if it 
is to contain only 1 element. In this case, the version can be either “Microsoft Windows 7” or “Microsoft Windows 8” (which 
are ORed together). Also, clients running on “Microsoft Windows XP Professional” are to be included.

{
"type": "stringArray",
"version": ["Microsoft Windows 7", "Microsoft Windows 8"],
"edition": ["Microsoft Windows XP Professional"]

}

Special Filter: geography
The geography filter is made up of 3 granularity levels. These are continent, country, and usState. The usState value 
applies only to United States. Continents and countries are presented in 2-letter codes. Countries follow ISO standard 
3166-1 alpha-2. US states are presented in ISO 3166-2:US format.

In the following example, the clients have to be either:

• In the continents Asia or Oceania

• In the country Germany

• In the US states New York, New Jersey, or Kansas
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 193



Chapter 11 Churn-Related Reports
Churn and Engagement Report
{
"type": "stringArray",
"continent": ["AS", "OC"],
"country": ["DE"],
"usState": ["US-NY", "US-NJ", "US-KS"]

}

Important • In this filter, the type can be string or stringArray. Regular expressions are not supported in geography filters.

Special Filter: gpu
The gpu filter is made up of 2 granularity levels. These are vendor and model. Both are represented as string values.

In the following example, the clients have to have a GPU:

• From the vendors NVIDIA or Intel

• With the model AMD Radeon HD 4600

{
"type": "stringArray",
"vendor": ["NVIDIA", "Intel"],
"model": ["AMD Radeon HD 4600"]

}

Special Filters: optOut and backOff
The opt-out mechanism was introduced in SDK version 5.1.0. With this feature, vendors can have their application report to 
the Usage Intelligence servers that a user does not want to be tracked. Using this property, vendors can filter out 
installations that were opted-out. 

Similarly, backoff filtering was introduced with version 5.0.0. Backoff is when a product account runs over-quota and the 
server starts rejecting data. Although filtering for backed-off installations was introduced with version 5, it was also 
backported to previous versions. However, when a new installation with an SDK prior to version 5 tries to register with the 
server and is rejected, it is not marked as being once backed-off when it is eventually accepted by the server. With version 5 
onwards, the server flags an installation as being historically backed-off in such cases.

Both backOff and optOut filters are made up of 2 boolean sub-values: historical and current. 

• The historical value refers to installations that were once backed-off or opted-out. These may include installations 
that are still currently backed-off or opted-out. 

• The current value refers to the status during the last time that the client called the server. Therefore, if an installation 
was opted-out yesterday but got opted-in today, it will be marked as historically opted-out but not currently opted-
out.

In the following example, for a client to be included, the optOut status has to either be historical AND not current, or 
else it can be not historical (i.e. users have to be currently opted-in but used to be opted-out at some point or never 
opted out).

{
"optOut":

[

194 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churn and Engagement Report
{
"historical": true,
"current": false

},
{

"historical": false
}

]
}

Special Filter: lifetimeEventUsage
Using lifetime event usage filters, clients can be filtered based on whether a particular event or set of events occurred or 
not within the client’s lifetime. Alternatively, one can set a filter based on the number of times an event has occurred.

In the following example, clients that are included must have done the “File Operations - Open” event at least 5 times to be 
counted.

{
 "category": "File Operations",
 "name": "Open",
 "min": 5

}

In the following example, clients must have done either “File Operations - Open” or “File Operations - Save” for a combined 
total of between 10 to 50 times.

{
"combiArray": [

 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Open"

 },
 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Save",

 }
],

"min": 10,
"max": 50

}

In the following example, clients must have done any event within the “File Operations” category for a combined total of 
not more than 100 times. This is done using a regular expression in the name.

{
"combiArray": [

{
"categoryType": "string",
"nameType": "regex",
"category": "File Operations",
"name": ".*"
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 195



Chapter 11 Churn-Related Reports
Churn and Engagement Report
}
 ],

"max": 100
}

Special Filter: reachOutDeliveries
Using ReachOut delivery filters, clients can be filtered based on whether a particular ReachOut message or a combination 
of ReachOut messages were delivered or not within the client’s lifetime.

The filter consists of a JSON array that includes one or more objects. Each object is a combination of delivered and 
undelivered campaigns, and the different combinations are ORed together. Therefore, it is possible to show users that 
either received ReachOut message 1 but not 2, or else received 3 but not 4 as in the following example:

In the following example, we are looking for clients who either received campaign 1 but not 2, OR received campaign 2 but 
not 3.

[
 {"auto": {"delivered": ["1"], "undelivered":["2"]}},
 {"auto": {"delivered": ["2"], "undelivered":["3"]}}

]

The above example contains only “auto” ReachOut campaigns. Manual campaigns can be specified using “manual” 
instead of “auto” as in the above example. Each object can contain a mix of “auto” and “manual” campaigns.

<NULL> Values in Global Filters
Most of the available properties can include null values. There are different reasons why a value would be null. When these 
are properties that are set by the application, the possible reasons why a value would be null are cases where the value has 
not been set by the application (such as prodBuild never being set), and cases where values are set to an empty string (“”) 
or to a string containing “<NULL>”. 

One other reason is that although these values have been set, the SDK has not yet had time to sync with the servers to 
provide this new information. In cases where the properties are set automatically such as hardware or OS related 
information, the values would be null if the SDK failed to retrieve that value from the OS or if the server failed to identify the 
value retrieved by the SDK. 

Other reasons include cases where Java version is requested from an application that does not use the Java SDK, US state 
is requested for users who are not running within the US, etc.

The following are the properties that support null values:

prodVersion
prodEdition
prodBuild
prodLanguage
machineId
formFactor
vm
cpuType
cpuCores
ram
resolutionWidth
resolutionHeight
196 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churn and Engagement Report
javaVersion
javaVmVersion
javaVmName
javaVendor
javaRuntime
javaGraphics
osLanguage
licenseKey
C01 .. C20 (Custom properties)
os
geography
gpu

Null values can be requested either on their own or as part of a filter containing other values.

The following example would return only cases where the prodVersion is null:

{
"prodVersion":

{
"includeNull": true

}
}

The following example would return cases where the prodVersion is either 1.1, 1.2 or null:

{
"prodVersion":

{
"type": "stringArray",
"value": ["1.1", "1.2"],
"includeNull": true

}
}

By default, when specifying a filter, null values would not be included. Therefore, in the following example, only clients 
with prodVersion set to 1.1 or 1.2 will be included, while null values are excluded:

{
"prodVersion":

{
"type": "stringArray",
"value": ["1.1", "1.2"]

}
}

However, if no filter is specified, then nulls are included by default. Therefore, if you want to include any value of 
prodVersion as long as it is not null, a prodVersion filter needs to be included as follows:

{
"prodVersion":

{
"type": "regex",
"value": ".*",
"includeNull": false

}
}

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 197



Chapter 11 Churn-Related Reports
Churn and Engagement Report
In the case of filters that use sub-properties (os, geography, and gpu), the includeNull filter is to be included in the sub-
property and applies to that specific sub-property only. In order to be able to include the includeNull property, instead of 
providing the value as a string or an array of strings, the value of the sub-property must be a JSON object that contains a 
property named “value”, and another named “includeNull”. Each of these properties is optional, but at least one of them 
must be present.

In the case of geography, this has a very particular meaning. Requesting for null “country” value does not return all cases 
where the country could not be retrieved, but only cases where the continent could be retrieved but the country could not. 
Similarly, requesting null “usState” returns cases where the continent and country could be retrieved but the US state 
could not. This does not include clients that are not situated in the US. If you are interested in finding clients where we 
could not detect any geographical data, the includeNull filter needs to be applied in the continent sub-property.

In the following example, we are requesting cases where we know that the client is within the US but the state could not be 
identified:

{
"geography":

{
"type": "string",
"country": "US",
"usState":

{
"includeNull": true

}
}

}

In the following example, we are requesting cases where the GPU is either “NVIDIA”, “AMD” or null (unidentified):

{
"gpu":

{
"type": "stringArray",
"vendor":

{
"value": ["NVIDIA", "AMD"],
"includeNull": true

}
}

}

Segmentation
The data in this report is segmented based on the specified property. The property used for segmentation is to be specified 
in the segmentBy field. The segments field should specify how the report is to be segmented.

• Segmentation Based on Installation Period

• String-Based Segmentation Properties

• Numeric Segmentation Properties

• Boolean Segmentation Properties

• Special Segmentation Properties

• <NULL> Values for Segmentation
198 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churn and Engagement Report
Segmentation Based on Installation Period
This report supports segmentation based on when each client was first seen by the Usage Intelligence system. When using 
one of these fields, the segments field cannot be used.

• installationMonth—The month during which each installation first reported to Usage Intelligence servers

• installationWeek—The week during which each installation first reported to Usage Intelligence servers

String-Based Segmentation Properties
The following properties are stored as strings:

machineId *
clientId *
prodVersion
prodEdition
prodBuild
prodLanguage
licenseType
formFactor *
osLanguage
osWordLength *
cpuType *
javaVersion *
javaVendor *
javaRuntime *
javaGraphics *
javaVmVersion *
javaVmName *
vm *
C01 .. C20 (Custom properties)
licenseKey *

Note • licenseKey requires a special user permission to be used for segmentation.

Note • Properties marked with an asterisk (*) are based on the current (latest known) values.

The type field when using one of the above properties needs to be string, stringArray or regex. A value field is always 
required. The contents of this field should be according to the specified type. 

• If string is specified, then the value field must contain a single string that needs to be matched precisely with the 
stored data. 

• If stringArray is specified, then the value field must contain an array of strings where one of which needs to match 
precisely with the stored data. 

• If specifying a regex, the value field should contain a string which is treated as a regular expression and the stored 
data will be matched against it using regular expression rules.

Example Using Segmentation by string, stringArray, and regex Values
{

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 199



Chapter 11 Churn-Related Reports
Churn and Engagement Report
"segmentBy": "prodVersion",
"segments": [

{
"type": "string",
"value": "1.0"

},
{

"type": "stringArray",
"value": ["2.0", "2.1", "3.1"],
"split": false,
"segmentLabel": "Versions 2 and 3"

},
{

"type": "regex",
"value": "^4\..*",
"split": false,
"segmentLabel": "All version 4"

},
{

"type": "regex",
"value": "^5\..*",
"split": true

}
]

}

In the above example, we are requesting a report with multiple segments. The first segment contains installations running 
version 1.0. Notice how this does not require a “split” property since there is only 1 value and therefore no further splitting 
is possible. The second segment contains versions 2.0, 2.1 and 3.1. In this case, the “split” property is required, and since 
we are requesting the API to combine these 3 versions, we must provide a “segmentLabel” value so that the returned data 
can be identified. The third segment is similar, although in this case the request is built using a regular expression. In this 
case, all versions starting with “4.” are to be included into one combined segment.

The last segment is different from the rest because we are requesting the API to split the data (split is set to true). 
Therefore, this can produce much more than 1 segment. In this case, we could see segments such as “5.1”, “5.2”, etc. 
Notice how since we are splitting, we should not provide a segmentLabel value since the labels are built using the different 
values that are found in the data.

Numeric Segmentation Properties
The following properties are stored as numeric values:

cpuCores
displayCoun
ram
resolutionWidth
resolutionHeight
lifetimeRuntimeMinutes
lifetimeSessionCount
screenPpi
javaVmRam

The type field in the above properties needs to be number or numberRange. If number is specified, then a value field must 
also be present. The value field should contain a number, which may contain a decimal point if required. If numberRange is 
specified, then the value field should NOT be used. Instead, the properties min and max are to be used. These refer to the 
200 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churn and Engagement Report
minimum and maximum number to be included in the report. If only one limit needs to be set, the other property is to be 
left out. Therefore, if you want to include installations with up to 2 display devices, you would not specify a min value, but 
instead specify only a max and set it as 2.

Example Using Segmentation by number, and numberRange Values
{

"segmentBy": "cpuCores",
"segments": [

{
"type": "number",
"value": 1,

},
{

"type": "numberRange",
"min": 2,
"max": 4,
"segmentLabel": "2 - 4"

},
{

"type": "numberRange",
"min": 5,
"segmentLabel": "5 +"

}
]

}

In the above example, we are requesting a report with 3 segments. The first segment contains only installations running on 
1 CPU core, the second segments contains installations running on 2, 3, or 4 cores (range 2 - 4), while the last segment 
contains all installations which are running on a machine with 5 or more CPU cores. Note how when the type was 
numberRange, we had do specify a segmentLabel which is a free string that will be used by the user to identify what is being 
included in that specific segment.

Boolean Segmentation Properties
The following properties are stored as boolean values:

touchScreen

The type field needs to be boolean, and the value must be true or false. A segmentLabel field is also required

The following example requests data segmented by touchScreen:

{
"segmentBy": "touchScreen",
"segments": [

{
"type": "boolean",
"value": true,
"segmentLabel": "Yes"

},
{

"type": "boolean",
"value": false,
"segmentLabel": "No"

},
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 201



Chapter 11 Churn-Related Reports
Churn and Engagement Report
{
"includeNull": true,
"segmentLabel": "Unknown"

}
]

}

In the above example, we are requesting a report with 3 segments. The first segment contains installations on which a 
touch screen was detected, the second one where no touch screen has been detected, while the last one is where we could 
not detect whether a touch screen is present due to the client using an old SDK which did not have touch screen detection 
support.

Special Segmentation Properties
Some properties need to be represented in a special format due to their unique requirements. These special properties are:

• Special Segmentation Format: licenseStatus

• Special Segmentation Format: os

• Special Segmentation Format: geography

• Special Segmentation Format: gpu

• Special Segmentation Format: optOut and backOff

Special Segmentation Format: licenseStatus
The licenseStatus value is made up of 4 sub-values: activated, blocked, expired and allowed. These are presented as 
boolean values. Any number of segments can be defined, and each segment can contain any subset of the 4 sub-values. 
These values are ANDed together. A segmentLabel value is required.

In the following example, 2 segments are specified - the first one showing blocked AND not expired and the second one 
showing allowed AND activated:

[
{

"segmentLabel": "BL and not EXP",
"blocked": true,
"expired": false

},
{

"segmentLabel": "WL and ACT",
"allowed": true,
"expired": true

}
]

Special Segmentation Format: os
The os value is made up of 3 granularity levels - platform, version, and edition. A particular level needs to be selected, 
and this is to be included in the property name such as os.version or os.edition. For a description of the differences 
between the 3 granularity levels, refer to Special Filter: os.
202 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churn and Engagement Report
The following example requests data segmented by all OS versions:

{
"segmentBy": "os.version",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

}

In the above example, no filtering is being done, and instead, a regular expression to include everything is set as the value. 
This will result in all OS versions to be returned.

Special Segmentation Format: geography
The geography value is made up of 3 granularity levels - continent, country, and usState. These granularity levels are 
explained in Special Filter: geography. A particular level needs to be selected, and this is to be included in the property 
name such as geography.continent or geography.country.

The following example requests data segmented by all countries:

{
"segmentBy": "geography.country",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

}In the above example, no filtering is being done, and instead, a regular expression to include everything is set as the value. 
This will result in all countries to be returned.

Special Segmentation Format: gpu
The gpu value is made up of 2 granularity levels - vendor and model. These granularity levels are explained in Special Filter: 
gpu. A particular level needs to be selected, and this is to be included in the property name, namely gpu.vendor or 
gpu.model. 

The following example requests data segmented by all GPU vendor:

{
"segmentBy": "gpu.vendor",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

}

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 203



Chapter 11 Churn-Related Reports
Churn and Engagement Report
In the above example, no filtering is being done, and instead, a regular expression to include everything is set as the value. 
This will result in all the GPU vendors to be returned.

Special Segmentation Format: optOut and backOff
Both backOff and optOut values are made up of 2 boolean sub-values: historical and current. Any number of segments 
can be defined, and each segment can contain any subset of the 2 sub-values. These values are ANDed together. A 
segmentLabel value is required.

In the following example, 2 segments are specified - the first one showing historical AND not current and the second one 
showing not historical (i.e. never opted-out):

[
{

"segmentLabel": "HISTORICAL and not CURRENT",
"historical": true,
"current": false

},
{

"segmentLabel": "Never opted-out",
"historical": false

}
]

<NULL> Values for Segmentation
Null values in segmentation are to be requested in a similar way to null values in filters (<NULL> Values in Global Filters). 
The same properties that support null in filtering also support null in segmentation.

By default, when segmenting, null values are not included within the segments, since only the values that have been 
specified in each segment are included. Null values don’t match any regular expression, so the only way to request null 
values to be included is to specify “includeNull” as true in a similar way to filtering. In segmentation, null values are 
returned as “<NULL>”. The API considers all cases where the data has never been set from the SDK, set as an empty string, 
or set as a string containing “<NULL>” to be the same.

The following example requests all values of prodBuild including null:

{
"level1": {

"property": "prodBuild",
"segments": [

{
"type": "regex",
"value": ".*",
"includeNull": true

}
]

}
}

In the case of segmentation properties that use sub-properties (os, geography, and gpu), the includeNull value is to be 
included in the sub-property and applies to that specific sub-property only. In order to be able to include the includeNull 
property, instead of providing the value as a string or an array of strings, the value of the sub-property must be a JSON 
204 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churn and Engagement Report
object that cointains a property named “value”, and another named “includeNull”. Each of these properties is optional, but 
at least one of them must be present. The same rules that apply for filtering these types of properties for null values also 
apply to segmentation.

In the following example, we are requesting segmentation by continent and are also requesting the number of clients 
where we could not detect the geographical location:

{
"level1": {

"property": "geography",
"segments": [

{
"type": "regex",
"continent": {

 "value": ".*",
 "includeNull": true

 }
}

]
}

}

Results Format
The results are formatted in a JSON object which contains an element for each segment. Each of these elements is an 
object which contains an element for each day/week/month after the install date. Each of these sub-elements is an object 
which contains the following properties:

• engaged—The number of users that were still active by this day/week/month

• engagedPercent—The percentage of users that were still active by this day/week/month

• lost—The number of users that got lost by this day/week/month

• lostPercent—The percentage of users that got lost by this day/week/month

Example Request
POST /reporting/engagement/churnAndEngagement HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 12345678901,
"startDate": "2017-11-01",
"stopDate": "2018-02-31",
"daysUntilDeclaredLost": 30,
"dateSplit": "month",
"segmentBy": "installationMonth"

}

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 205



Chapter 11 Churn-Related Reports
Churn and Engagement Report
Example Response
HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "OK",
"results": {

"2017-11-01": {
"0": {

"engaged": 6,
"engagedPercent": 100,
"lost": 0,
"lostPercent": 0

},
"1": {

"engaged": 6,
"engagedPercent": 100,
"lost": 0,
"lostPercent": 0

},
"2": {

"engaged": 6,
"engagedPercent": 100,
"lost": 0,
"lostPercent": 0

},
"3": {

"engaged": 5,
"engagedPercent": 83.3,
"lost": 1,
"lostPercent": 16.7

}
},
"2017-12-01": {

"0": {
"engaged": 29,
"engagedPercent": 100,
"lost": 0,
"lostPercent": 0

},
"1": {

"engaged": 28,
"engagedPercent": 96.6,
"lost": 1,
"lostPercent": 3.4

},
"2": {

"engaged": 28,
"engagedPercent": 96.6,
"lost": 1,
"lostPercent": 3.4

}
},
"2018-01-01": {

"0": {
"engaged": 2131,
206 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Runtime Activity Reports for Lost Installations
"engagedPercent": 100,
"lost": 0,
"lostPercent": 0

},
"1": {

"engaged": 2073,
"engagedPercent": 97.3,
"lost": 58,
"lostPercent": 2.7

}
},
"2018-02-01": {

"0": {
"engaged": 1655,
"engagedPercent": 100,
"lost": 0,
"lostPercent": 0

}
}

}
}

Runtime Activity Reports for Lost Installations
These reports consist of 3 histograms which show the following metrics:

• Active Days—The number of days clients were active within their lifetime.

• Sessions—The number of times users launched your application.

• Runtime—The total amount of time in hours users spent interacting with your application.

For more information, see the following sections:

• Request/Response Parameters Summary

• Global Filters

• Results Format

Request/Response Parameters Summary
Histograms can be requested for the total number of active days, sessions or runtime hours. This is selectable by 
requesting one of the 3 URLs listed below.

POST /reporting/churn/histogram/days
POST /reporting/churn/histogram/sessions
POST /reporting/churn/histogram/runtime
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 207



Chapter 11 Churn-Related Reports
Runtime Activity Reports for Lost Installations
The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Global Filters
These filters are common between both reports documented above. Most of the available filter properties are string-based. 
This means that when applying a filter, the requested field can be represented as a string, stringArray or regex. There 
are also some filters which are numeric. These filters should be represented as number or numberRange.

The data used for the filters in these reports is the latest-known data, or data when lost. Therefore, if a user started using 
version 1 and then switched to version 2 before getting lost, that user will show up if filtering for version 2 and not for 
version 1.

• String-Based Filters

• Numeric Filters

• Date Range Filters

Table 11-2 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. Required 
only for non-cookie authentication.

• sessionId (string)—The sessionId obtained via POST /auth/login. Required only 
for non-cookie authentication.

• productId (integer)—The product ID on which this request is being done

• startDate (string)—The first date of the date range on which to base the report. 
This is to be formatted as YYYY-MM-DD.

• stopDate (string)—The last date of the date range on which to base the report. This 
is to be formatted as YYYY-MM-DD.

• daysUntilDeclaredLost (integer)—This specifies the number of consecutive days 
of inactivity that have to pass until a client installation is declared lost.

• dateReportedLost (string)—When an installation is lost, it can either be shown as 
lost on the date it last contacted the Usage Intelligence servers (dateLastSeen) or 
else it can be shown as lost when it was declared lost (last date when it contacted 
Usage Intelligence + the number of days specified in daysUntilDeclaredLost) 
(dateDeclaredLost). Therefore, the permitted values are dateLastSeen and 
dateDeclaredLost.

• globalFilters (object)—JSON object containing the filters to be applied to the 
available data. Details about these filters can be found in the Global Filters section.

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• results (object)—Contains the results as requested represented as a JSON object. 
The result format is described below.
208 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Runtime Activity Reports for Lost Installations
• Boolean Filters

• Special Filters

• <NULL> Values in Global Filters

String-Based Filters
The following properties are stored as strings:

machineId *
clientId *
prodVersion
prodEdition
prodBuild
prodLanguage
licenseType
formFactor *
osLanguage
osWordLength *
cpuType *
dotNetVersion *
javaVersion *
javaVendor *
javaRuntime *
javaGraphics *
javaVmVersion *
javaVmName *
vm *
C01 .. C20 (Custom properties)
licenseKey *

Note • licenseKey requires a special user permission to be used as a filter.

Note • Properties marked with an asterisk (*) are based on the current (latest known) values.

The type field in the above filters needs to be string, stringArray or regex. A value field is always required. The contents 
of this field should be according to the specified type. 

• If string is specified, then the value field must contain a single string that needs to be matched precisely with the 
stored data. 

• If stringArray is specified, then the value field must contain an array of strings where one of which needs to match 
precisely with the stored data. 

• If specifying a regex, the value field should contain a string which is treated as a regular expression and the stored 
data will be matched against it using regular expression rules.

Example Filter Using a String Value

In this example, the product build value needs to be exactly “3014.int-12214”:

{

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 209



Chapter 11 Churn-Related Reports
Runtime Activity Reports for Lost Installations
"prodBuild":
{

"type": "string",
"value": "3014.int-12214"

}
}

Example Filter Using a String Array

In this example, the product build value needs to be either “3014.int-12214”, “3017.enx-57718”, or “4180.vrx-81059”. Note 
that since the type is declared as stringArray, the value field needs to contain an array. Consider all elements in the array 
to have an OR logical expression between them.:

{
"prodBuild":

{
"type": "stringArray",
"value": ["3014.int-12214", "3017.enx-57718", "4180.vrx-81059"]

}
}

Example Filter Using a Regular Expression

In this example, the product build value needs to start with “30” and end with “18” whilst having 10 characters in between:

{
 "prodBuild":

 {
 "type": "regex",
 "value": "^30.{10}18$"

 }
}

Numeric Filters
The following properties are stored as numeric values:

cpuCores *
displayCount *
ram *
resolutionWidth *
resolutionHeight *
lifetimeRuntimeMinutes *
lifetimeSessionCount *
screenPpi *
javaVmRam *

Note • Properties marked with an asterisk (*) are based on the current (latest known) values.

The type field in the above filters needs to be number or numberRange. 

• If number is specified, then a value field must also be present. The value field should contain a number, which may 
contain a decimal point if required. 
210 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Runtime Activity Reports for Lost Installations
• If numberRange is specified, then the value field should NOT be used. Instead, the properties min and max are to be 
used. These refer to the minimum and maximum number to be included in the report. If only one limit needs to be set, 
the other property is to be left out. Therefore, if you want to include installations with up to 2 display devices, you 
would not specify a min value, but instead specify only a max and set it as 2.

Example Filter Using a Number Value

In this example, the number of display devices needs to be exactly 3:

{
"displayCount":

{
"type": "number",
"value": 3

}
}

Example Filter Using a Number Range Value

In this example, the RAM needs to be between 1025MB and 4096MB (both included):

{
"ram":

{
"type": "numberRange",
"min": 1025,
"max": 4096

}
}

Date Range Filters
The following properties are stored as dates:

dateInstalled
dateLastSeen

The type field in the above filters needs to be date or dateRange. 

• If date is specified, then a value field must also be present. The value field should contain a date. 

• If dateRange is specified, then the value field should NOT be used. Instead, the properties min and max are to be used. 
These refer to the minimum and maximum dates to be included in the report. If only one limit needs to be set, the 
other property is to be left out. 

In the following example, users installed after January 1st 2018 are to be shown:

{
 "dateInstalled":

 {
 "type": "dateRange", 
"min": "2018-01-01"

 }
}

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 211



Chapter 11 Churn-Related Reports
Runtime Activity Reports for Lost Installations
Note • All dates must be in ISO 8601 format.

Boolean Filters
The following property is stored as boolean:

touchScreen

The type field in the above filters needs to be boolean. The value must be true or false. In the following filter, clients with a 
touch screen are being requested.

{
"touchScreen":

{
"type": "boolean",
"value": true

}
}

Special Filters
Some filters need to be represented in a special format due to their unique requirements. These special filters are:

• Special Filter: licenseStatus

• Special Filter: os

• Special Filter: geography

• Special Filter: gpu

• Special Filters: optOut and backOff

• Special Filter: lifetimeEventUsage

• Special Filter: reachOutDeliveries

Special Filter: licenseStatus
The licenseStatus filter is made up of 4 sub-values: activated, blocked, expired and allowed. These are presented as 
boolean values. 

Unlike other filters, this filter is presented as an array of JSON objects. Each object can contain a subset (or all) of these 4 
boolean values. 

Consider the following example. In this example, for a client to be included, the license has to either be activated AND 
allowed, or else it can be not allowed AND expired. In other words, ( (activated AND allowed) OR ((NOT)allowed AND 
expired) ).

{
"licenseStatus":

[
{

212 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Runtime Activity Reports for Lost Installations
"activated": true,
"allowed": true

},
{

"allowed": false,
"expired": true

}
]

}

Special Filter: os
The os filter is made up of 3 granularity levels. These are platform, version, and edition. These are meant to split the OS 
name into levels of detail as required by the user. Consider the following:

• platform: Microsoft Windows

• version: Microsoft Windows 7

• edition: Microsoft Windows 7 Professional

If a filter is set on the version “Microsoft Windows 7”, the result would include all editions of Windows 7. One or more of 
these granularity levels may be specified. If more than 1 granularity level is specified, the values are ORed together.

In the following example, all editions of “Microsoft Windows 7” are included, and also “Microsoft Windows Vista Home 
Premium”:

{
"type": "string",
"version": "Microsoft Windows 7",
"edition": "Microsoft Windows Vista Home Premium"

}

In the following example, the type is stringArray. Note that an array needs to be passed if the type is set as such, even if it 
is to contain only 1 element. In this case, the version can be either “Microsoft Windows 7” or “Microsoft Windows 8” (which 
are ORed together). Also, clients running on “Microsoft Windows XP Professional” are to be included.

{
"type": "stringArray",
"version": ["Microsoft Windows 7", "Microsoft Windows 8"],
"edition": ["Microsoft Windows XP Professional"]

}

Special Filter: geography
The geography filter is made up of 3 granularity levels. These are continent, country, and usState. The usState value 
applies only to United States. Continents and countries are presented in 2-letter codes. Countries follow ISO standard 
3166-1 alpha-2. US states are presented in ISO 3166-2:US format.

In the following example, the clients have to be either:

• In the continents Asia or Oceania

• In the country Germany

• In the US states New York, New Jersey, or Kansas
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 213



Chapter 11 Churn-Related Reports
Runtime Activity Reports for Lost Installations
{
"type": "stringArray",
"continent": ["AS", "OC"],
"country": ["DE"],
"usState": ["US-NY", "US-NJ", "US-KS"]

}

Important • In this filter, the type can be string or stringArray. Regular expressions are not supported in geography filters.

Special Filter: gpu
The gpu filter is made up of 2 granularity levels. These are vendor and model. Both are represented as string values.

In the following example, the clients have to have a GPU:

• From the vendors NVIDIA or Intel

• With the model AMD Radeon HD 4600

{
"type": "stringArray",
"vendor": ["NVIDIA", "Intel"],
"model": ["AMD Radeon HD 4600"]

}

Special Filters: optOut and backOff
The opt-out mechanism was introduced in SDK version 5.1.0. With this feature, vendors can have their application report to 
the Usage Intelligence servers that a user does not want to be tracked. Using this property, vendors can filter out 
installations that were opted-out. 

Similarly, backoff filtering was introduced with version 5.0.0. Backoff is when a product account runs over-quota and the 
server starts rejecting data. Although filtering for backed-off installations was introduced with version 5, it was also 
backported to previous versions. However, when a new installation with an SDK prior to version 5 tries to register with the 
server and is rejected, it is not marked as being once backed-off when it is eventually accepted by the server. With version 5 
onwards, the server flags an installation as being historically backed-off in such cases.

Both backOff and optOut filters are made up of 2 boolean sub-values: historical and current. 

• The historical value refers to installations that were once backed-off or opted-out. These may include installations 
that are still currently backed-off or opted-out. 

• The current value refers to the status during the last time that the client called the server. Therefore, if an installation 
was opted-out yesterday but got opted-in today, it will be marked as historically opted-out but not currently opted-
out.

In the following example, for a client to be included, the optOut status has to either be historical AND not current, or 
else it can be not historical (i.e. users have to be currently opted-in but used to be opted-out at some point or never 
opted out).

{
"optOut":

[

214 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Runtime Activity Reports for Lost Installations
{
"historical": true,
"current": false

},
{

"historical": false
}

]
}

Special Filter: lifetimeEventUsage
Using lifetime event usage filters, clients can be filtered based on whether a particular event or set of events occurred or 
not within the client’s lifetime. Alternatively, one can set a filter based on the number of times an event has occurred.

In the following example, clients that are included must have done the “File Operations - Open” event at least 5 times to be 
counted.

{
 "category": "File Operations",
 "name": "Open",
 "min": 5

}

In the following example, clients must have done either “File Operations - Open” or “File Operations - Save” for a combined 
total of between 10 to 50 times.

{
"combiArray": [

 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Open"

 },
 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Save",

 }
],

"min": 10,
"max": 50

}

In the following example, clients must have done any event within the “File Operations” category for a combined total of 
not more than 100 times. This is done using a regular expression in the name.

{
"combiArray": [

{
"categoryType": "string",
"nameType": "regex",
"category": "File Operations",
"name": ".*"
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 215



Chapter 11 Churn-Related Reports
Runtime Activity Reports for Lost Installations
}
 ],

"max": 100
}

Special Filter: reachOutDeliveries
Using ReachOut delivery filters, clients can be filtered based on whether a particular ReachOut message or a combination 
of ReachOut messages were delivered or not within the client’s lifetime.

The filter consists of a JSON array that includes one or more objects. Each object is a combination of delivered and 
undelivered campaigns, and the different combinations are ORed together. Therefore, it is possible to show users that 
either received ReachOut message 1 but not 2, or else received 3 but not 4 as in the following example:

In the following example, we are looking for clients who either received campaign 1 but not 2, OR received campaign 2 but 
not 3.

[
 {"auto": {"delivered": ["1"], "undelivered":["2"]}},
 {"auto": {"delivered": ["2"], "undelivered":["3"]}}

]

The above example contains only “auto” ReachOut campaigns. Manual campaigns can be specified using “manual” 
instead of “auto” as in the above example. Each object can contain a mix of “auto” and “manual” campaigns.

<NULL> Values in Global Filters
Most of the available properties can include null values. There are different reasons why a value would be null. When these 
are properties that are set by the application, the possible reasons why a value would be null are cases where the value has 
not been set by the application (such as prodBuild never being set), and cases where values are set to an empty string (“”) 
or to a string containing “<NULL>”. 

One other reason is that although these values have been set, the SDK has not yet had time to sync with the servers to 
provide this new information. In cases where the properties are set automatically such as hardware or OS related 
information, the values would be null if the SDK failed to retrieve that value from the OS or if the server failed to identify the 
value retrieved by the SDK. 

Other reasons include cases where Java version is requested from an application that does not use the Java SDK, US state 
is requested for users who are not running within the US, etc.

The following are the properties that support null values:

prodVersion
prodEdition
prodBuild
prodLanguage
machineId
formFactor
vm
cpuType
cpuCores
ram
resolutionWidth
resolutionHeight
216 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Runtime Activity Reports for Lost Installations
javaVersion
javaVmVersion
javaVmName
javaVendor
javaRuntime
javaGraphics
osLanguage
licenseKey
C01 .. C20 (Custom properties)
os
geography
gpu

Null values can be requested either on their own or as part of a filter containing other values.

The following example would return only cases where the prodVersion is null:

{
"prodVersion":

{
"includeNull": true

}
}

The following example would return cases where the prodVersion is either 1.1, 1.2 or null:

{
"prodVersion":

{
"type": "stringArray",
"value": ["1.1", "1.2"],
"includeNull": true

}
}

By default, when specifying a filter, null values would not be included. Therefore, in the following example, only clients 
with prodVersion set to 1.1 or 1.2 will be included, while null values are excluded:

{
"prodVersion":

{
"type": "stringArray",
"value": ["1.1", "1.2"]

}
}

However, if no filter is specified, then nulls are included by default. Therefore, if you want to include any value of 
prodVersion as long as it is not null, a prodVersion filter needs to be included as follows:

{
"prodVersion":

{
"type": "regex",
"value": ".*",
"includeNull": false

}
}

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 217



Chapter 11 Churn-Related Reports
Runtime Activity Reports for Lost Installations
In the case of filters that use sub-properties (os, geography, and gpu), the includeNull filter is to be included in the sub-
property and applies to that specific sub-property only. In order to be able to include the includeNull property, instead of 
providing the value as a string or an array of strings, the value of the sub-property must be a JSON object that contains a 
property named “value”, and another named “includeNull”. Each of these properties is optional, but at least one of them 
must be present.

In the case of geography, this has a very particular meaning. Requesting for null “country” value does not return all cases 
where the country could not be retrieved, but only cases where the continent could be retrieved but the country could not. 
Similarly, requesting null “usState” returns cases where the continent and country could be retrieved but the US state 
could not. This does not include clients that are not situated in the US. If you are interested in finding clients where we 
could not detect any geographical data, the includeNull filter needs to be applied in the continent sub-property.

In the following example, we are requesting cases where we know that the client is within the US but the state could not be 
identified:

{
"geography":

{
"type": "string",
"country": "US",
"usState":

{
"includeNull": true

}
}

}

In the following example, we are requesting cases where the GPU is either “NVIDIA”, “AMD” or null (unidentified):

{
"gpu":

{
"type": "stringArray",
"vendor":

{
"value": ["NVIDIA", "AMD"],
"includeNull": true

}
}

}

Results Format
The results are formatted in a JSON object which contains an element for each histogram bin. Each of these elements 
contains a numeric value which represents the number of installations which fall under this bin.

Example Request
POST /reporting/churn/histogram/runtime HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",
218 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Runtime Activity Reports for Lost Installations
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 12345678901,
"startDate": "2018-10-01",
"stopDate": "2018-12-31",
"daysUntilDeclaredLost": 30,
"globalFilters": {}

}

Example Response
HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "OK",
"results": {

"\u2264 0:50": 90,
"0:51 - 1:00": 2,
"1:01 - 1:15": 53,
"1:16 - 1:30": 11,
"1:31 - 1:45": 51,
"1:46 - 2:00": 52,
"2:01 - 2:15": 12,
"2:16 - 2:30": 41,
"2:31 - 2:44": 9,
"2:45 - 3:00": 35,
"3:01 - 3:30": 49,
"3:31 - 4:00": 69,
"4:01 - 4:30": 40,
"4:31 - 5:00": 35,
"5:01 - 5:30": 28,
"5:31 - 6:00": 42,
"6:01 - 6:30": 26,
"6:31 - 7:00": 28,
"7:01 - 7:30": 21,
"7:31 - 8:00": 28,
"8:01 - 8:30": 20,
"8:31 - 9:00": 14,
"9:01 - 9:30": 20,
"9:31 - 10:00": 19,
"10:01 - 10:30": 9,
"10:31 - 11:00": 19,
"11:01 - 11:30": 13,
"11:31 - 12:00": 16,
"12:01 - 13:00": 23,
"13:01 - 14:00": 27,
"14:01 - 15:00": 19,
"15:01 - 16:00": 17,
"16:01 - 17:00": 11,
"17:01 - 18:00": 14,
"18:01 - 21:00": 36,
"21:01 - 24:00": 37,
"24:01 - 27:00": 30,
"27:01 - 30:00": 28,
"30:01 - 33:00": 40,
"33:01 - 36:00": 33,
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 219



Chapter 11 Churn-Related Reports
Churned User Activity Reports
"36:01 - 39:00": 16,
"\u2265 39:01": 69

}
}

Churned User Activity Reports
The aim of these reports is to show how events occurred throughout the churned clients’ lifetime before they were lost. The 
data can be presented either as a paged table which shows a list of all events and how many times each occurred, or else as 
a histogram showing only a subset of events as specified. The histogram shows how much churned clients performed an 
event throughout their lifetime or their average daily/weekly/monthly usage.

• Data Table Report

• Histogram Report

Data Table Report
This report returns data that is to be represented in tabular format. It contains data about each tracked event, how many 
times it occurred, how many times each user performed each event on average, etc. The events can be presented either as 
a flat view or categorized hierarchically based on event category and name. Data for each event can then be segmented by 
any property as described below.

• Request/Response Parameters Summary

• Global Filters

• Segmentation

• Sorting

• Results Format

Request/Response Parameters Summary
POST /reporting/eventTracking/churn/lifetime/dataTable
220 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churned User Activity Reports
The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Table 11-3 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. Required 
only for non-cookie authentication.

• sessionId (string)—The sessionId obtained via POST /auth/login. Required only 
for non-cookie authentication.

• productId (integer)—The product ID on which this request is being done

• startDate (string)—The first date of the date range on which to base the report. 
This is to be formatted as YYYY-MM-DD.

• stopDate (string)—The last date of the date range on which to base the report. This 
is to be formatted as YYYY-MM-DD.

• daysUntilDeclaredLost (integer)—This specifies the number of consecutive days 
of inactivity that have to pass until a client installation is declared lost.

• dateReportedLost (string)—When an installation is lost, it can either be shown as 
lost on the date it last contacted the Usage Intelligence servers (dateLastSeen) or 
else it can be shown as lost when it was declared lost (last date when it contacted 
Usage Intelligence + the number of days specified in daysUntilDeclaredLost) 
(dateDeclaredLost). Therefore, the permitted values are dateLastSeen and 
dateDeclaredLost.

• globalFilters (object)—JSON object containing the filters to be applied to the 
available data. Details about these filters can be found in the Global Filters section.

• segmentBy (string)—The field with which to segment the data. Details about 
segmentation can be found in the Segmentation section.

• segments (string)—Used to specify how data is to be segmented. Must be used in 
conjunction with segmentBy. Details about segmentation can be found in the 
Segmentation section.

• categorizeEvents (boolean)—Whether to return events hierarchically based on 
category/event name (true) or return a flattened list (false).

• sorting (object)—Used to specify the values with which to sort and the direction. 
Details about this field can be found in the sorting section.

• paging (object)—Optional parameter used to specify how many events to show 
and the index of the event to start with (starting from 0). These sub-parameters are 
named limit and startAt. Therefore, if showing 10 events per page and requesting 
page 3, limit should be set to 10 and startAt should be set to 20.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 221



Chapter 11 Churn-Related Reports
Churned User Activity Reports
Global Filters
Most of the available filter properties are string-based. This means that when applying a filter, the requested field can be 
represented as a string, stringArray or regex. There are also some filters which are numeric. These filters should be 
represented as number or numberRange.

• String-Based Filters

• Numeric Filters

• Date Range Filters

• Boolean Filters

• Special Filters

• <NULL> Values in Global Filters

String-Based Filters
The following properties are stored as strings:

machineId
clientId
prodVersion
prodEdition
prodBuild
prodLanguage
licenseType
formFactor
osLanguage
osWordLength
cpuType
dotNetVersion
javaVersion
javaVendor
javaRuntime
javaGraphics
javaVmVersion
javaVmName

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• segmentBy (string)—The same value that was passed as segmentBy in the request

• categorizeEvents (boolean)—The same value that was passed as 
categorizeEvents in the request

• results (array)—Contains the results as requested represented as a JSON object. 
The result format is described below.

Table 11-3 • Request Properties

Property Description
222 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churned User Activity Reports
vm
C01 .. C20 (Custom properties)
licenseKey

Note • licenseKey requires a special user permission to be used as a filter.

The type field in the above filters needs to be string, stringArray or regex. A value field is always required. The contents 
of this field should be according to the specified type. 

• If string is specified, then the value field must contain a single string that needs to be matched precisely with the 
stored data. 

• If stringArray is specified, then the value field must contain an array of strings where one of which needs to match 
precisely with the stored data. 

• If specifying a regex, the value field should contain a string which is treated as a regular expression and the stored 
data will be matched against it using regular expression rules.

Example Filter Using a String Value

In this example, the product build value needs to be exactly “3014.int-12214”:

{
"prodBuild":

{
"type": "string",
"value": "3014.int-12214"

}
}

Example Filter Using a String Array

In this example, the product build value needs to be either “3014.int-12214”, “3017.enx-57718”, or “4180.vrx-81059”. Note 
that since the type is declared as stringArray, the value field needs to contain an array. Consider all elements in the array 
to have an OR logical expression between them.:

{
"prodBuild":

{
"type": "stringArray",
"value": ["3014.int-12214", "3017.enx-57718", "4180.vrx-81059"]

}
}

Example Filter Using a Regular Expression

In this example, the product build value needs to start with “30” and end with “18” whilst having 10 characters in between:

{
 "prodBuild":

 {
 "type": "regex",
 "value": "^30.{10}18$"

 }
}

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 223



Chapter 11 Churn-Related Reports
Churned User Activity Reports
Numeric Filters
The following properties are stored as numeric values:

cpuCores *
displayCount *
ram *
resolutionWidth *
resolutionHeight *
lifetimeRuntimeMinutes *
lifetimeSessionCount *
screenPpi *
javaVmRam *

Note • Properties marked with an asterisk (*) are based on the current (latest known) values.

The type field in the above filters needs to be number or numberRange. 

• If number is specified, then a value field must also be present. The value field should contain a number, which may 
contain a decimal point if required. 

• If numberRange is specified, then the value field should NOT be used. Instead, the properties min and max are to be 
used. These refer to the minimum and maximum number to be included in the report. If only one limit needs to be set, 
the other property is to be left out. Therefore, if you want to include installations with up to 2 display devices, you 
would not specify a min value, but instead specify only a max and set it as 2.

Example Filter Using a Number Value

In this example, the number of display devices needs to be exactly 3:

{
"displayCount":

{
"type": "number",
"value": 3

}
}

Example Filter Using a Number Range Value

In this example, the RAM needs to be between 1025MB and 4096MB (both included):

{
"ram":

{
"type": "numberRange",
"min": 1025,
"max": 4096

}
}

Date Range Filters
The following properties are stored as dates:
224 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churned User Activity Reports
dateInstalled
dateLastSeen

The type field in the above filters needs to be date or dateRange. 

• If date is specified, then a value field must also be present. The value field should contain a date. 

• If dateRange is specified, then the value field should NOT be used. Instead, the properties min and max are to be used. 
These refer to the minimum and maximum dates to be included in the report. If only one limit needs to be set, the 
other property is to be left out. 

In the following example, users installed after January 1st 2018 are to be shown:

{
 "dateInstalled":

 {
 "type": "dateRange", 
"min": "2018-01-01"

 }
}

Note • All dates must be in ISO 8601 format.

Boolean Filters
The following property is stored as boolean:

touchScreen

The type field in the above filters needs to be boolean. The value must be true or false. In the following filter, clients with a 
touch screen are being requested.

{
"touchScreen":

{
"type": "boolean",
"value": true

}
}

Special Filters
Some filters need to be represented in a special format due to their unique requirements. These special filters are:

• Special Filter: licenseStatus

• Special Filter: os

• Special Filter: geography

• Special Filter: gpu

• Special Filters: optOut and backOff

• Special Filter: lifetimeEventUsage
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 225



Chapter 11 Churn-Related Reports
Churned User Activity Reports
• Special Filter: reachOutDeliveries

Special Filter: licenseStatus

The licenseStatus filter is made up of 4 sub-values: activated, blocked, expired and allowed. These are presented as 
boolean values. 

Unlike other filters, this filter is presented as an array of JSON objects. Each object can contain a subset (or all) of these 4 
boolean values. 

Consider the following example. In this example, for a client to be included, the license has to either be activated AND 
allowed, or else it can be not allowed AND expired. In other words, ( (activated AND allowed) OR ((NOT)allowed AND 
expired) ).

{
"licenseStatus":

[
{

"activated": true,
"allowed": true

},
{

"allowed": false,
"expired": true

}
]

}

Special Filter: os

The os filter is made up of 3 granularity levels. These are platform, version, and edition. These are meant to split the OS 
name into levels of detail as required by the user. Consider the following:

• platform: Microsoft Windows

• version: Microsoft Windows 7

• edition: Microsoft Windows 7 Professional

If a filter is set on the version “Microsoft Windows 7”, the result would include all editions of Windows 7. One or more of 
these granularity levels may be specified. If more than 1 granularity level is specified, the values are ORed together.

In the following example, all editions of “Microsoft Windows 7” are included, and also “Microsoft Windows Vista Home 
Premium”:

{
"type": "string",
"version": "Microsoft Windows 7",
"edition": "Microsoft Windows Vista Home Premium"

}

In the following example, the type is stringArray. Note that an array needs to be passed if the type is set as such, even if it 
is to contain only 1 element. In this case, the version can be either “Microsoft Windows 7” or “Microsoft Windows 8” (which 
are ORed together). Also, clients running on “Microsoft Windows XP Professional” are to be included.

{
"type": "stringArray",
"version": ["Microsoft Windows 7", "Microsoft Windows 8"],
226 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churned User Activity Reports
"edition": ["Microsoft Windows XP Professional"]
}

Special Filter: geography

The geography filter is made up of 3 granularity levels. These are continent, country, and usState. The usState value 
applies only to United States. Continents and countries are presented in 2-letter codes. Countries follow ISO standard 
3166-1 alpha-2. US states are presented in ISO 3166-2:US format.

In the following example, the clients have to be either:

• In the continents Asia or Oceania

• In the country Germany

• In the US states New York, New Jersey, or Kansas

{
"type": "stringArray",
"continent": ["AS", "OC"],
"country": ["DE"],
"usState": ["US-NY", "US-NJ", "US-KS"]

}

Important • In this filter, the type can be string or stringArray. Regular expressions are not supported in geography filters.

Special Filter: gpu

The gpu filter is made up of 2 granularity levels. These are vendor and model. Both are represented as string values.

In the following example, the clients have to have a GPU:

• From the vendors NVIDIA or Intel

• With the model AMD Radeon HD 4600

{
"type": "stringArray",
"vendor": ["NVIDIA", "Intel"],
"model": ["AMD Radeon HD 4600"]

}

Special Filters: optOut and backOff

The opt-out mechanism was introduced in SDK version 5.1.0. With this feature, vendors can have their application report to 
the Usage Intelligence servers that a user does not want to be tracked. Using this property, vendors can filter out 
installations that were opted-out. 

Similarly, backoff filtering was introduced with version 5.0.0. Backoff is when a product account runs over-quota and the 
server starts rejecting data. Although filtering for backed-off installations was introduced with version 5, it was also 
backported to previous versions. However, when a new installation with an SDK prior to version 5 tries to register with the 
server and is rejected, it is not marked as being once backed-off when it is eventually accepted by the server. With version 5 
onwards, the server flags an installation as being historically backed-off in such cases.

Both backOff and optOut filters are made up of 2 boolean sub-values: historical and current. 
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 227



Chapter 11 Churn-Related Reports
Churned User Activity Reports
• The historical value refers to installations that were once backed-off or opted-out. These may include installations 
that are still currently backed-off or opted-out. 

• The current value refers to the status during the last time that the client called the server. Therefore, if an installation 
was opted-out yesterday but got opted-in today, it will be marked as historically opted-out but not currently opted-
out.

In the following example, for a client to be included, the optOut status has to either be historical AND not current, or 
else it can be not historical (i.e. users have to be currently opted-in but used to be opted-out at some point or never 
opted out).

{
"optOut":

[
{

"historical": true,
"current": false

},
{

"historical": false
}

]
}

Special Filter: lifetimeEventUsage

Using lifetime event usage filters, clients can be filtered based on whether a particular event or set of events occurred or 
not within the client’s lifetime. Alternatively, one can set a filter based on the number of times an event has occurred.

In the following example, clients that are included must have done the “File Operations - Open” event at least 5 times to be 
counted.

{
 "category": "File Operations",
 "name": "Open",
 "min": 5

}

In the following example, clients must have done either “File Operations - Open” or “File Operations - Save” for a combined 
total of between 10 to 50 times.

{
"combiArray": [

 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Open"

 },
 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Save",

 }
],

"min": 10,
228 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churned User Activity Reports
"max": 50
}

In the following example, clients must have done any event within the “File Operations” category for a combined total of 
not more than 100 times. This is done using a regular expression in the name.

{
"combiArray": [

{
"categoryType": "string",
"nameType": "regex",
"category": "File Operations",
"name": ".*"

}
 ],

"max": 100
}

Special Filter: reachOutDeliveries

Using ReachOut delivery filters, clients can be filtered based on whether a particular ReachOut message or a combination 
of ReachOut messages were delivered or not within the client’s lifetime.

The filter consists of a JSON array that includes one or more objects. Each object is a combination of delivered and 
undelivered campaigns, and the different combinations are ORed together. Therefore, it is possible to show users that 
either received ReachOut message 1 but not 2, or else received 3 but not 4 as in the following example:

In the following example, we are looking for clients who either received campaign 1 but not 2, OR received campaign 2 but 
not 3.

[
 {"auto": {"delivered": ["1"], "undelivered":["2"]}},
 {"auto": {"delivered": ["2"], "undelivered":["3"]}}

]

The above example contains only “auto” ReachOut campaigns. Manual campaigns can be specified using “manual” 
instead of “auto” as in the above example. Each object can contain a mix of “auto” and “manual” campaigns.

<NULL> Values in Global Filters
Most of the available properties can include null values. There are different reasons why a value would be null. When these 
are properties that are set by the application, the possible reasons why a value would be null are cases where the value has 
not been set by the application (such as prodBuild never being set), and cases where values are set to an empty string (“”) 
or to a string containing “<NULL>”. 

One other reason is that although these values have been set, the SDK has not yet had time to sync with the servers to 
provide this new information. In cases where the properties are set automatically such as hardware or OS related 
information, the values would be null if the SDK failed to retrieve that value from the OS or if the server failed to identify the 
value retrieved by the SDK. 

Other reasons include cases where Java version is requested from an application that does not use the Java SDK, US state 
is requested for users who are not running within the US, etc.

The following are the properties that support null values:

prodVersion
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 229



Chapter 11 Churn-Related Reports
Churned User Activity Reports
prodEdition
prodBuild
prodLanguage
machineId
formFactor
vm
cpuType
cpuCores
ram
resolutionWidth
resolutionHeight
javaVersion
javaVmVersion
javaVmName
javaVendor
javaRuntime
javaGraphics
osLanguage
licenseKey
C01 .. C20 (Custom properties)
os
geography
gpu

Null values can be requested either on their own or as part of a filter containing other values.

The following example would return only cases where the prodVersion is null:

{
"prodVersion":

{
"includeNull": true

}
}

The following example would return cases where the prodVersion is either 1.1, 1.2 or null:

{
"prodVersion":

{
"type": "stringArray",
"value": ["1.1", "1.2"],
"includeNull": true

}
}

By default, when specifying a filter, null values would not be included. Therefore, in the following example, only clients 
with prodVersion set to 1.1 or 1.2 will be included, while null values are excluded:

{
"prodVersion":

{
"type": "stringArray",
"value": ["1.1", "1.2"]

}
}

However, if no filter is specified, then nulls are included by default. Therefore, if you want to include any value of 
prodVersion as long as it is not null, a prodVersion filter needs to be included as follows:
230 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churned User Activity Reports
{
"prodVersion":

{
"type": "regex",
"value": ".*",
"includeNull": false

}
}

In the case of filters that use sub-properties (os, geography, and gpu), the includeNull filter is to be included in the sub-
property and applies to that specific sub-property only. In order to be able to include the includeNull property, instead of 
providing the value as a string or an array of strings, the value of the sub-property must be a JSON object that contains a 
property named “value”, and another named “includeNull”. Each of these properties is optional, but at least one of them 
must be present.

In the case of geography, this has a very particular meaning. Requesting for null “country” value does not return all cases 
where the country could not be retrieved, but only cases where the continent could be retrieved but the country could not. 
Similarly, requesting null “usState” returns cases where the continent and country could be retrieved but the US state 
could not. This does not include clients that are not situated in the US. If you are interested in finding clients where we 
could not detect any geographical data, the includeNull filter needs to be applied in the continent sub-property.

In the following example, we are requesting cases where we know that the client is within the US but the state could not be 
identified:

{
"geography":

{
"type": "string",
"country": "US",
"usState":

{
"includeNull": true

}
}

}

In the following example, we are requesting cases where the GPU is either “NVIDIA”, “AMD” or null (unidentified):

{
"gpu":

{
"type": "stringArray",
"vendor":

{
"value": ["NVIDIA", "AMD"],
"includeNull": true

}
}

}

Segmentation
The data in this report is segmented based on the specified property. The property used for segmentation is to be specified 
in the segmentBy field. The segments field should specify how the report is to be segmented.

• String-Based Segmentation Properties
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 231



Chapter 11 Churn-Related Reports
Churned User Activity Reports
• Numeric Segmentation Properties

• Boolean Segmentation Properties

• Special Segmentation Properties

• <NULL> Values for Segmentation

String-Based Segmentation Properties
The following properties are stored as strings:

machineId 
clientId 
prodVersion
prodEdition
prodBuild
prodLanguage
licenseType
formFactor 
osLanguage
osWordLength 
cpuType 
javaVersion 
javaVendor 
javaRuntime 
javaGraphics 
javaVmVersion 
javaVmName 
vm 
C01 .. C20 (Custom properties)
licenseKey 

Note • licenseKey requires a special user permission to be used for segmentation.

The type field when using one of the above properties needs to be string, stringArray or regex. A value field is always 
required. The contents of this field should be according to the specified type. 

• If string is specified, then the value field must contain a single string that needs to be matched precisely with the 
stored data. 

• If stringArray is specified, then the value field must contain an array of strings where one of which needs to match 
precisely with the stored data. 

• If specifying a regex, the value field should contain a string which is treated as a regular expression and the stored 
data will be matched against it using regular expression rules.

Example Using Segmentation by string, stringArray, and regex Values
{

"segmentBy": "prodVersion",
"segments": [

{
"type": "string",
"value": "1.0"
232 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churned User Activity Reports
},
{

"type": "stringArray",
"value": ["2.0", "2.1", "3.1"],
"split": false,
"segmentLabel": "Versions 2 and 3"

},
{

"type": "regex",
"value": "^4\..*",
"split": false,
"segmentLabel": "All version 4"

},
{

"type": "regex",
"value": "^5\..*",
"split": true

}
]

}

In the above example, we are requesting a report with multiple segments. The first segment contains installations running 
version 1.0. Notice how this does not require a “split” property since there is only 1 value and therefore no further splitting 
is possible. The second segment contains versions 2.0, 2.1 and 3.1. In this case, the “split” property is required, and since 
we are requesting the API to combine these 3 versions, we must provide a “segmentLabel” value so that the returned data 
can be identified. The third segment is similar, although in this case the request is built using a regular expression. In this 
case, all versions starting with “4.” are to be included into one combined segment.

The last segment is different from the rest because we are requesting the API to split the data (split is set to true). 
Therefore, this can produce much more than 1 segment. In this case, we could see segments such as “5.1”, “5.2”, etc. 
Notice how since we are splitting, we should not provide a segmentLabel value since the labels are built using the different 
values that are found in the data.

Numeric Segmentation Properties
The following properties are stored as numeric values:

cpuCores
displayCoun
ram
resolutionWidth
resolutionHeight
lifetimeRuntimeMinutes
lifetimeSessionCount
screenPpi
javaVmRam

The type field in the above properties needs to be number or numberRange. If number is specified, then a value field must 
also be present. The value field should contain a number, which may contain a decimal point if required. If numberRange is 
specified, then the value field should NOT be used. Instead, the properties min and max are to be used. These refer to the 
minimum and maximum number to be included in the report. If only one limit needs to be set, the other property is to be 
left out. Therefore, if you want to include installations with up to 2 display devices, you would not specify a min value, but 
instead specify only a max and set it as 2.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 233



Chapter 11 Churn-Related Reports
Churned User Activity Reports
Example Using Segmentation by number, and numberRange Values
{

"segmentBy": "cpuCores",
"segments": [

{
"type": "number",
"value": 1,

},
{

"type": "numberRange",
"min": 2,
"max": 4,
"segmentLabel": "2 - 4"

},
{

"type": "numberRange",
"min": 5,
"segmentLabel": "5 +"

}
]

}

In the above example, we are requesting a report with 3 segments. The first segment contains only installations running on 
1 CPU core, the second segments contains installations running on 2, 3, or 4 cores (range 2 - 4), while the last segment 
contains all installations which are running on a machine with 5 or more CPU cores. Note how when the type was 
numberRange, we had do specify a segmentLabel which is a free string that will be used by the user to identify what is being 
included in that specific segment.

Boolean Segmentation Properties
The following properties are stored as boolean values:

touchScreen

The type field needs to be boolean, and the value must be true or false. A segmentLabel field is also required

The following example requests data segmented by touchScreen:

{
"segmentBy": "touchScreen",
"segments": [

{
"type": "boolean",
"value": true,
"segmentLabel": "Yes"

},
{

"type": "boolean",
"value": false,
"segmentLabel": "No"

},
{

"includeNull": true,
"segmentLabel": "Unknown"

}

234 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churned User Activity Reports
]
}

In the above example, we are requesting a report with 3 segments. The first segment contains installations on which a 
touch screen was detected, the second one where no touch screen has been detected, while the last one is where we could 
not detect whether a touch screen is present due to the client using an old SDK which did not have touch screen detection 
support.

Special Segmentation Properties
Some properties need to be represented in a special format due to their unique requirements. These special properties are:

• Special Segmentation Format: licenseStatus

• Special Segmentation Format: os

• Special Segmentation Format: geography

• Special Segmentation Format: gpu

• Special Segmentation Format: optOut and backOff

Special Segmentation Format: licenseStatus

The licenseStatus value is made up of 4 sub-values: activated, blocked, expired and allowed. These are presented as 
boolean values. Any number of segments can be defined, and each segment can contain any subset of the 4 sub-values. 
These values are ANDed together. A segmentLabel value is required.

In the following example, 2 segments are specified - the first one showing blocked AND not expired and the second one 
showing allowed AND activated:

[
{

"segmentLabel": "BL and not EXP",
"blocked": true,
"expired": false

},
{

"segmentLabel": "WL and ACT",
"allowed": true,
"expired": true

}
]

Special Segmentation Format: os

The os value is made up of 3 granularity levels - platform, version, and edition. A particular level needs to be selected, 
and this is to be included in the property name such as os.version or os.edition. For a description of the differences 
between the 3 granularity levels, refer to Special Filter: os.

The following example requests data segmented by all OS versions:

{
"segmentBy": "os.version",
"segments": [

{

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 235



Chapter 11 Churn-Related Reports
Churned User Activity Reports
"type": "regex",
"value": ".*",
"split": true

}
]

}

In the above example, no filtering is being done, and instead, a regular expression to include everything is set as the value. 
This will result in all OS versions to be returned.

Special Segmentation Format: geography

The geography value is made up of 3 granularity levels - continent, country, and usState. These granularity levels are 
explained in Special Filter: geography. A particular level needs to be selected, and this is to be included in the property 
name such as geography.continent or geography.country.

The following example requests data segmented by all countries:

{
"segmentBy": "geography.country",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

}In the above example, no filtering is being done, and instead, a regular expression to include everything is set as the value. 
This will result in all countries to be returned.

Special Segmentation Format: gpu

The gpu value is made up of 2 granularity levels - vendor and model. These granularity levels are explained in Special Filter: 
gpu. A particular level needs to be selected, and this is to be included in the property name, namely gpu.vendor or 
gpu.model. 

The following example requests data segmented by all GPU vendor:

{
"segmentBy": "gpu.vendor",
"segments": [

{
"type": "regex",
"value": ".*",
"split": true

}
]

}

In the above example, no filtering is being done, and instead, a regular expression to include everything is set as the value. 
This will result in all the GPU vendors to be returned.
236 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churned User Activity Reports
Special Segmentation Format: optOut and backOff

Both backOff and optOut values are made up of 2 boolean sub-values: historical and current. Any number of segments 
can be defined, and each segment can contain any subset of the 2 sub-values. These values are ANDed together. A 
segmentLabel value is required.

In the following example, 2 segments are specified - the first one showing historical AND not current and the second one 
showing not historical (i.e. never opted-out):

[
{

"segmentLabel": "HISTORICAL and not CURRENT",
"historical": true,
"current": false

},
{

"segmentLabel": "Never opted-out",
"historical": false

}
]

<NULL> Values for Segmentation
Null values in segmentation are to be requested in a similar way to null values in filters (<NULL> Values in Global Filters). 
The same properties that support null in filtering also support null in segmentation.

By default, when segmenting, null values are not included within the segments, since only the values that have been 
specified in each segment are included. Null values don’t match any regular expression, so the only way to request null 
values to be included is to specify “includeNull” as true in a similar way to filtering. In segmentation, null values are 
returned as “<NULL>”. The API considers all cases where the data has never been set from the SDK, set as an empty string, 
or set as a string containing “<NULL>” to be the same.

The following example requests all values of prodBuild including null:

{
"level1": {

"property": "prodBuild",
"segments": [

{
"type": "regex",
"value": ".*",
"includeNull": true

}
]

}
}

In the case of segmentation properties that use sub-properties (os, geography, and gpu), the includeNull value is to be 
included in the sub-property and applies to that specific sub-property only. In order to be able to include the includeNull 
property, instead of providing the value as a string or an array of strings, the value of the sub-property must be a JSON 
object that cointains a property named “value”, and another named “includeNull”. Each of these properties is optional, but 
at least one of them must be present. The same rules that apply for filtering these types of properties for null values also 
apply to segmentation.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 237



Chapter 11 Churn-Related Reports
Churned User Activity Reports
In the following example, we are requesting segmentation by continent and are also requesting the number of clients 
where we could not detect the geographical location:

{
"level1": {

"property": "geography",
"segments": [

{
"type": "regex",
"continent": {

 "value": ".*",
 "includeNull": true

 }
}

]
}

}

Sorting
The sorting parameter expects a JSON object which is made up of the following:

• events (string)—The value with which the event names are to be sorted. Possible values are alpha (alphabetical 
sorting), eventCounts, or uniqueUsersUsedAtLeastOnce.

• eventsDirection (string)—Whether to sort event names in ascending or descending order. Possible values are asc or 
desc.

• segments (string)—The value with which the segments are to be sorted. Possible values are alpha (alphabetical 
sorting), active (sorting by count of active users), eventCounts, uniqueUsersUsedAtLeastOnce, or 
percentUsedAtLeastOnce.

• segmentsDirection (string)—Whether to sort segments in ascending or descending order. Possible values are asc or 
desc.

Results Format
The structure of the results depends on whether the categorizeEvents property is set to true or false, and whether 
segmentation is being used. 

The simplest form is when events are not categorized and segmentation is disabled. In this case, the results property 
contains an array of objects each containing details about each event (event category and name), how many times the 
event occurred in total, how many times each event occurred per user on average, etc. 

When setting categorizeEvents to true, the results are presented into 2 levels. The results are still an array of objects, but 
each object consists of only 2 properties - eventCategory and categoryData. The categoryData value is an array of objects, 
and each object contains the data for one event within that particular category. The only difference is that this sub-object 
does not contain the eventCategory property since that property is already present in the upper level.

Segmentation adds another level in the results. When using segmentation, each event object contains a property named 
segments. The segments value is an array of objects, with each object containing data about one segment. The segment 
name can be found in the property value named segmentLabel. The rest of the properties are common with the properties 
inside the event objects.
238 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churned User Activity Reports
The following are the properties contained in the data objects:

Example Response with No Event Categorization and No Segmentation
HTTP/1.1 200 OK

Table 11-4 • Results Format Properties

Property Description

eventCategory (string) Present only in event objects when 
categorizeEvents is set to false. Contains the event 
category.

eventName (string) Present in event objects. Contains the event name.

segmentLabel (string) Present in segment objects. Contains the name/label 
of the segment.

eventCount (integer) The total number of times that the event occurred.

eventCountPerUserUsedAtLeastOnce (float) The average number of times that this event occurred 
for each client that performed this event at least once.

eventCountPerUserUsedAtLeastOnceActiveDay (float) The average number of times that this event occurred 
per day for each client that performed this event at 
least once.

eventCountPerUserUsedAtLeastOnceActiveWeek (float) The average number of times that this event occurred 
per week for each client that performed this event at 
least once.

eventCountPerUserUsedAtLeastOnceActiveMonth (float) The average number of times that this event occurred 
per month for each client that performed this event at 
least once.

usersUsedAtLeastOnce (integer) The number of clients which performed this event at 
least once.

percentUsedAtLeastOnce (float) The percentage of clients which performed this event 
at least once.

usersNeverUsed (integer) The number of clients which never performed this 
event.

percentNeverUsed (float) The percentage of clients which never performed this 
event.

segments (object) Present only in event objects when segmentation is 
being used. Contains an array of objects - one object 
for each segment.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 239



Chapter 11 Churn-Related Reports
Churned User Activity Reports
Content-Type: application/json

{
"status": "OK",
"segmentBy": null,
"categorizeEvents": false,
"results": [

{
"eventCategory": "File Menu",
"eventName": "Open",
"eventCount": 5000,
"eventCountPerUserUsedAtLeastOnce": 20.0,
"eventCountPerUserUsedAtLeastOnceActiveDay": 2.62,
"eventCountPerUserUsedAtLeastOnceActiveDay": 9.84,
"eventCountPerUserUsedAtLeastOnceActiveDay": 29.96,
"usersUsedAtLeastOnce": 250,
"percentUsedAtLeastOnce": 50.0,
"usersNeverUsed": 250,
"percentNeverUsed": 50.0

},
{

"eventCategory": "File Menu",
"eventName": "Save",
"eventCount": 2000,
"eventCountPerUserUsedAtLeastOnce": 20.0,
"eventCountPerUserUsedAtLeastOnceActiveDay": 2.62,
"eventCountPerUserUsedAtLeastOnceActiveDay": 9.84,
"eventCountPerUserUsedAtLeastOnceActiveDay": 29.96,
"usersUsedAtLeastOnce": 100,
"percentUsedAtLeastOnce": 20.0,
"usersNeverUsed": 400,
"percentNeverUsed": 80.0

},
{

"eventCategory": "Edit Menu",
"eventName": "Enlarge",
"eventCountPerUser": 1.0,
"eventCountPerUserUsedAtLeastOnce": 0.3,
"eventCountPerUserUsedAtLeastOnceActiveDay": 2.62,
"eventCountPerUserUsedAtLeastOnceActiveDay": 9.84,
"eventCountPerUserUsedAtLeastOnceActiveDay": 29.96,
"usersUsedAtLeastOnce": 150,
"percentUsedAtLeastOnce": 30.0,
"usersNeverUsed": 350,
"percentNeverUsed": 70.0

}
 ]

Example Response with Event Categorization and Segmentation by prodVersion
HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "OK",
"segmentBy": "prodVersion",
240 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churned User Activity Reports
"categorizeEvents": true,
"results": [

{
"eventCategory": "File Menu",
"categoryData":

[
{

"eventName": "Open",
"eventCount": 5000,
"eventCountPerUserUsedAtLeastOnce": 20.0,
"eventCountPerUserUsedAtLeastOnceActiveDay": 2.62,
"eventCountPerUserUsedAtLeastOnceActiveDay": 9.84,
"eventCountPerUserUsedAtLeastOnceActiveDay": 29.96,
"usersUsedAtLeastOnce": 250,
"percentUsedAtLeastOnce": 50.0,
"usersNeverUsed": 250,
"percentNeverUsed": 50.0
"segments":

[
{

"segmentLabel": "V1.1",
"eventCount": 3000,
"eventCountPerUserUsedAtLeastOnce": 20.0,
"eventCountPerUserUsedAtLeastOnceActiveDay": 2.62,
"eventCountPerUserUsedAtLeastOnceActiveDay": 9.84,
"eventCountPerUserUsedAtLeastOnceActiveDay": 29.96,
"usersUsedAtLeastOnce": 150,
"percentUsedAtLeastOnce": 33.33,
"usersNeverUsed": 300,
"percentNeverUsed": 66.66

},
{

"segmentLabel": "V1.5",
"eventCount": 2000,
"eventCountPerUserUsedAtLeastOnce": 10.0,
"eventCountPerUserUsedAtLeastOnceActiveDay": 1.85,
"eventCountPerUserUsedAtLeastOnceActiveDay": 4.27,
"eventCountPerUserUsedAtLeastOnceActiveDay": 14.92,
"usersUsedAtLeastOnce": 100,
"percentUsedAtLeastOnce": 33.33,
"usersNeverUsed": 200,
"percentNeverUsed": 66.66

}
]

},
{

"eventName": "Save",
"eventCount": 2000,
"eventCountPerUserUsedAtLeastOnce": 20.0,
"eventCountPerUserUsedAtLeastOnceActiveDay": 2.62,
"eventCountPerUserUsedAtLeastOnceActiveDay": 9.84,
"eventCountPerUserUsedAtLeastOnceActiveDay": 29.96,
"usersUsedAtLeastOnce": 100,
"percentUsedAtLeastOnce": 20.0,
"usersNeverUsed": 400,
"percentNeverUsed": 80.0,
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 241



Chapter 11 Churn-Related Reports
Churned User Activity Reports
"segments":
[

{
"segmentLabel": "V1.1",
"eventCount": 1300,
"eventCountPerUserUsedAtLeastOnce": 13.0,
"eventCountPerUserUsedAtLeastOnceActiveDay": 4.98,
"eventCountPerUserUsedAtLeastOnceActiveDay": 11.31,
"eventCountPerUserUsedAtLeastOnceActiveDay": 24.18,
"usersUsedAtLeastOnce": 150,
"percentUsedAtLeastOnce": 40.0,
"usersNeverUsed": 100,
"percentNeverUsed": 60.0

},
{

"segmentLabel": "V1.5",
"eventCount": 700,
"eventCountPerUserUsedAtLeastOnce": 7.0,
"eventCountPerUserUsedAtLeastOnceActiveDay": 3.1,
"eventCountPerUserUsedAtLeastOnceActiveDay": 7.27,
"eventCountPerUserUsedAtLeastOnceActiveDay": 11.82,
"usersUsedAtLeastOnce": 100,
"percentUsedAtLeastOnce": 25.0,
"usersNeverUsed": 300,
"percentNeverUsed": 75.0

}
]

}
]

},
{

"eventCategory": "Edit Menu",
"categoryData":

[
{

"eventName": "Enlarge",
"eventCount": 500,
"eventCountPerUserUsedAtLeastOnce": 0.3,
"eventCountPerUserUsedAtLeastOnceActiveDay": 2.62,
"eventCountPerUserUsedAtLeastOnceActiveDay": 9.84,
"eventCountPerUserUsedAtLeastOnceActiveDay": 29.96,
"usersUsedAtLeastOnce": 150,
"percentUsedAtLeastOnce": 30.0,
"usersNeverUsed": 350,
"percentNeverUsed": 70.0,
"segments":

[
{

"segmentLabel": "V1.1",
"eventCount": 200,
"eventCountPerUserUsedAtLeastOnce": 3.33,
"eventCountPerUserUsedAtLeastOnceActiveDay": 4.32,
"eventCountPerUserUsedAtLeastOnceActiveDay": 12.47,
"eventCountPerUserUsedAtLeastOnceActiveDay": 25.51,
"usersUsedAtLeastOnce": 60,
"percentUsedAtLeastOnce": 28.57,
242 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churned User Activity Reports
"usersNeverUsed": 150,
"percentNeverUsed": 71.43

},
{

"segmentLabel": "V1.5",
"eventCount": 300,
"eventCountPerUserUsedAtLeastOnce": 3.33,
"eventCountPerUserUsedAtLeastOnceActiveDay": 5.33,
"eventCountPerUserUsedAtLeastOnceActiveDay": 6.42,
"eventCountPerUserUsedAtLeastOnceActiveDay": 9.18,
"usersUsedAtLeastOnce": 90,
"percentUsedAtLeastOnce": 31.03,
"usersNeverUsed": 200,
"percentNeverUsed": 68.97

}
]

}
]

}
 ]

Histogram Report
This report returns data that is to be represented in chart format. The result consists of histogram-style data for each 
different event or event combination that has been requested. The results consist of 4 histograms based on different 
values: event counts, average event count per day, average event count per week, and average event count per month.

• Request/Response Parameters Summary

• Events Property

• lowerBounds and binUpperBounds Properties

• Results Summary

• Results Histograms

Request/Response Parameters Summary
POST /reporting/eventTracking/churn/lifetime/histogram
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 243



Chapter 11 Churn-Related Reports
Churned User Activity Reports
The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Table 11-5 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. Required 
only for non-cookie authentication.

• sessionId (string)—The sessionId obtained via POST /auth/login. Required only 
for non-cookie authentication.

• productId (integer)—The product ID on which this request is being done

• startDate (string)—The first date of the date range on which to base the report. 
This is to be formatted as YYYY-MM-DD.

• stopDate (string)—The last date of the date range on which to base the report. This 
is to be formatted as YYYY-MM-DD.

• daysUntilDeclaredLost (integer)—This specifies the number of consecutive days 
of inactivity that have to pass until a client installation is declared lost.

• dateReportedLost (string)—When an installation is lost, it can either be shown as 
lost on the date it last contacted the Usage Intelligence servers (dateLastSeen) or 
else it can be shown as lost when it was declared lost (last date when it contacted 
Usage Intelligence + the number of days specified in daysUntilDeclaredLost) 
(dateDeclaredLost). Therefore, the permitted values are dateLastSeen and 
dateDeclaredLost.

• globalFilters (object)—JSON object containing the filters to be applied to the 
available data. Details about these filters can be found in the Global Filters section.

• events (array)—Array of objects specifying which events to include in the result. 
Supports both single events and event combinations. Details can be found in the 
Events property section.

• lowerBounds (object)—Optional parameter to specify the lower bounds of each 
histogram. Must be used in conjunction with binUpperBounds. Details can be found 
in lowerBounds and binUpperBounds Properties.

• binUpperBounds (object)—Optional parameter to specify the histogram bin 
bounds. Must be used in conjunction with lowerBounds. Details can be found in 
lowerBounds and binUpperBounds Properties.
244 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churned User Activity Reports
Events Property
The events property consists of an array of objects each representing a single event or a combination of events which are to 
be grouped together and represented as if they were a single event.

To specify a single event, the events array would contain an object similar to the following example:

{
 "category": "File Operations",
 "name":"Open"

}

To specify a combination of events, the events array would contain an object that looks like the following:

{
 "combiLabel": "Open and Save",
 "combiArray": [

 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Open"

 },
 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Save",

 }
]

}

In the above example, we are combining the data from the Open and Save events, both under the File Operations category. 
In this example, “string” is being used both as categoryType and nameType. The other possible value is “regex”. The 
following example shows a case where all events under the File Operations category are being combined:

{
 "combiLabel": "All File Operations",
 "combiArray": [

 {

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• segmentBy (string)—The same value that was passed as segmentBy in the request

• summary (object) – Contains the number of clients who performed each event at 
least once and the number of clients which never performed each event. The 
summary data format is described in Results Histograms.

• histograms (object) – Contains the histogram data as requested represented as a 
JSON object. The histogram data format is described in Results Histograms.

Table 11-5 • Request Properties

Property Description
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 245



Chapter 11 Churn-Related Reports
Churned User Activity Reports
 "categoryType": "string",
 "nameType": "regex",
 "category": "File Operations",
 "name": ".*"

 }
]

}

In order to allow more advanced reporting, it is also possible to apply different filters for each event using a property 
named eventFilters. This way, it is possible to compare usage of a property or group of properties between different user 
groups. The format for eventFilters is exactly the same as globalFilters.

In the following example, we are comparing how the clients that are on version 1.1 have used the “Open” event vs. those 
clients that are on version 2.0:

[
{

 "category": "File Operations",
 "name":"Open",
 "eventFilters":

 {
 "prodVersion":

 {
 "type": "string",
 "value": "1.1"

 }
 }

},
{

 "category": "File Operations",
 "name":"Open",
 "eventFilters":

 {
 "prodVersion":

 {
 "type": "string",
 "value": "2.0"

 }
 }

}
]

It is also possible to apply different filters to different events within the same combiArray. Note that the use cases for this 
kind of filtering are rather limited, and in most cases, this method of filtering is not advised unless you have very specific 
requirements. In the following example, we are requesting the “Open” event for version 1.1 combined with the “Save” 
event for version 2.0:

{
 "combiLabel": "Open and Save in v1.1 and v2.0 respectively",
 "combiArray": [

 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Open",
 "eventFilters":

 {
246 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churned User Activity Reports
 "prodVersion":
 {

 "type": "string",
 "value": "1.1"

 }
 }

 },
 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Save",
 "eventFilters":

 {
 "prodVersion":

 {
 "type": "string",
 "value": "2.0"

 }
 }

 }
]

}

lowerBounds and binUpperBounds Properties
By default, this report generates the histogram bins (ranges) automatically using a proprietary algorithm to reduce the 
effect of outliers. The lowerBounds and binUpperBounds are optional properties to allow the user to manually specify the 
bins instead of using this algorithm.

Both properties consist of a JSON object which contains 4 properties - eventCount, averageCountPerActiveDay, 
averageCountPerActiveWeek, and averageCountPerActiveMonth.

The lowerBounds object contains the lowest boundary in the leftmost bin in the histogram. The expected values inside the 
lowerBounds object are numeric. The eventCount value is an integer greater or equal to 1, while the other values are 
floating point numbers greater or equal to 0. Floating point numbers are expected to contain up to 2 decimal places, 
otherwise they are rounded.

The following is an example lowerBounds object:

{
"eventCount": 1,
"averageCountPerActiveDay": 0.1,
"averageCountPerActiveWeek": 0.1,
"averageCountPerActiveMonth": 0.1

}

The binUpperBounds property contains the upper boundaries of each bin in the histogram. The expected values inside the 
binUpperBounds object are arrays containing numeric values or a string containing “inf”. Each boundary must be higher 
than the one before it, and the first boundary must be greater than or equal to its corresponding value in lowerBounds. 
Similar to lowerBounds, the eventCount values are expected to be integers, while other values are expected to be floating 
point numbers with up to 2 decimal places.

The following is an example of the binUpperBounds object:

{

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 247



Chapter 11 Churn-Related Reports
Churned User Activity Reports
"eventCount": [1, 2, 4, 8, 16, 32, "inf"],
"averageCountPerActiveDay": [0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 10, 50, 100, "inf"],
"averageCountPerActiveWeek": [0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 10, 50, 100, "inf"],
"averageCountPerActiveMonth": [0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 10, 50, 100, "inf"]

}

Results Summary
The summary section is intended to show how many clients performed each event vs. the number of clients which never 
performed each event.

{
"usedAtLeastOnce": [{

"combiLabel": "Save or Delete",
"value": 5

}, {
"category": "File Menu",
"name": "Open",
"value": 20

}],
"neverUsed": [{

"combiLabel": "Save or Delete",
"value": 37

}, {
"category": "File Menu",
"name": "Open",
"value": 112

}]
}

Results Histograms
The histograms section contains the actual histogram results as requested.

{
"eventCount":
{
"1 - 2":
[
{

"combiLabel": "Save or Delete",
"value": 10

},
{

"category": "File Menu",
"name": "Open",
"value": 10

}
],

"3 - 5":
[
{

"combiLabel": "Save or Delete",
"value": 10
248 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churned User Activity Reports
},
{

"category": "File Menu",
"name": "Open",
"value": 10

}
],

"6 - 8":
[
{

"combiLabel": "Save or Delete",
"value": 1

},
{

"category": "File Menu",
"name": "Open",
"value": 1

}
],

"9 - 11":
[
{

"combiLabel": "Save or Delete",
"value": 0

},
{

"category": "File Menu",
"name": "Open",
"value": 0

}
]

},
"averageCountPerActiveDay":
{
"0.0 - 0.1":
[
{

"combiLabel": "Save or Delete",
"value": 0

},
{

"category": "File Menu",
"name": "Open",
"value": 0

}
],

"0.11 - 0.2":
[
{

"combiLabel": "Save or Delete",
"value": 4

},
{

"category": "File Menu",
"name": "Open",
"value": 4
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 249



Chapter 11 Churn-Related Reports
Churned User Activity Reports
}
],

"0.21 - 3.0":
[
{

"combiLabel": "Save or Delete",
"value": 20

},
{

"category": "File Menu",
"name": "Open",
"value": 20

}
],

"3.01 - 4.0":
[
{

"combiLabel": "Save or Delete",
"value": 1

},
{

"category": "File Menu",
"name": "Open",
"value": 1

}
],

"4.01 - 5.0":
[
{

"combiLabel": "Save or Delete",
"value": 0

},
{

"category": "File Menu",
"name": "Open",
"value": 0

}
]

},
"averageCountPerActiveWeek":
{
"0.5 - 1.0":
[
{

"combiLabel": "Save or Delete",
"value": 18

},
{

"category": "File Menu",
"name": "Open",
"value": 18

}
],

"1.01 - 2.0":
[
{

250 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 11 Churn-Related Reports
Churned User Activity Reports
"combiLabel": "Save or Delete",
"value": 2

},
{

"category": "File Menu",
"name": "Open",
"value": 2

}
],

"2.01 - 3.0":
[
{

"combiLabel": "Save or Delete",
"value": 3

},
{

"category": "File Menu",
"name": "Open",
"value": 3

}
],

"3.00 - 4.0":
[
{

"combiLabel": "Save or Delete",
"value": 2

},
{

"category": "File Menu",
"name": "Open",
"value": 2

}
],

"4.01 - 5.0":
[
{

"combiLabel": "Save or Delete",
"value": 0

},
{

"category": "File Menu",
"name": "Open",
"value": 0

}
]

},
"averageCountPerActiveMonth":
{
"0.7 - 1.0":
[
{

"combiLabel": "Save or Delete",
"value": 16

},
{

"category": "File Menu",
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 251



Chapter 11 Churn-Related Reports
Churned User Activity Reports
"name": "Open",
"value": 16

}
],

"1.01 - 3.0":
[
{

"combiLabel": "Save or Delete",
"value": 3

},
{

"category": "File Menu",
"name": "Open",
"value": 3

}
],

"3.01 - 5.0":
[
{

"combiLabel": "Save or Delete",
"value": 4

},
{

"category": "File Menu",
"name": "Open",
"value": 4

}
],

"6.01 - 7.0":
[
{

"combiLabel": "Save or Delete",
"value": 1

},
{

"category": "File Menu",
"name": "Open",
"value": 1

}
]

}
}

252 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



12

License Key Registry Management
This section explains how to retrieve and search license keys from the key registry, and how to update and insert new keys 
in the key registry.

• Retrieving and Searching License Keys from the Key Registry

• Updating and Inserting New Keys in the Key Registry

Retrieving and Searching License Keys from the 
Key Registry

This request is used in order to get a list of license keys known by the Usage Intelligence servers along with their details. 
This is also used to search the key registry for a particular key or set of keys either by the key value itself or by another 
property such as by the expiry date or the assigned license type.

• Request/Response Parameters Summary

• Example Request

• Example Response

Request/Response Parameters Summary
POST /licenseKeys/listKeys

The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

• Request JSON Object Properties

• Request Headers. Response Headers, and Status Codes Properties

• Response JSON Object Properties
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 253



Chapter 12 License Key Registry Management
Retrieving and Searching License Keys from the Key Registry
Request JSON Object Properties

The following is a summary of the properties inside the request JSON object.

Table 12-1 • Request Properties

Property Description

user (string) The username of your Usage Intelligence user account. Required only for non-cookie 
authentication.

sessionId (string) The sessionId obtained via POST /auth/login. Required only for non-cookie authentication.

productId (integer) The product ID on which this request is being done

filters (object) Optional JSON object to apply filters to retrieve subset of the keys on the server. Can contain 
any number of the following members:

licenseKey 
(object)

Filter by license key

• type (string)—The data type of the value. Can be string, stringArray, or 
regex

• value (string/array)—Contains either a string with the full license key, 
a list of strings with full license keys, or a string containing a regular 
expression.

addedDate 
(object) 

Filter based on the date added to the key registry

• type (string)—The data type of the filter. Can be date or dateRange.

• value (string)—To be used only if type is date. Should contain a single 
date formatted as YYYY-MM-DD

• min (string)—To be used if type is dateRange. Should contain the 
minimum date formatted as YYYY-MM-DD. Can be used by itself or in 
conjuction with max.

• max (string)—To be used if type is dateRange. Should contain the 
maximum date formatted as YYYY-MM-DD. Can be used by itself or in 
conjuction with min.

expiryDate 
(object)

Filter based on the date the key is set to expire

• type (string)—The data type of the filter. Can be date or dateRange

• value (string)—To be used only if type is date. Should contain a single 
date formatted as YYYY-MM-DD.

• min (string)—To be used if type is dateRange. Should contain the 
minimum date formatted as YYYY-MM-DD. Can be used by itself or in 
conjuction with max.

• max (string)—To be used if type is dateRange. Should contain the 
maximum date formatted as YYYY-MM-DD. Can be used by itself or in 
conjunction with min.
254 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 12 License Key Registry Management
Retrieving and Searching License Keys from the Key Registry
filters (object) 

(continued)

autoCollected 
(boolean)

Whether the keys to show were automatically collected by the SDK or not 
(uploaded to the server by the vendor)

overQuotaCount 
(object) 

Filter based on whether the key is oversubscribed and by how much. A 
negative number means that the key is running under-quota meaning that 
the user may still use it on more machines. The number 0 means that the 
quota has all been used but it hasn’t been exceeded. Positive numbers 
mean that the key is over-subscribed.

• type (string)—The data type of the filter. Can be number or 
numberRange.

• value (integer)—To be used only if type is number. Should contain a 
single number.

• min (integer)—To be used if type is numberRange. Should contain the 
minimum overQuota number to include. Can be used by itself or in 
conjuction with max. If max is present, the min value should be smaller 
than max.

• max (integer)—To be used if type is numberRange. Should contain the 
maximum overQuota number to include. Can be used by itself or in 
conjuction with min. If min is present, the max value should be greater 
than min.

licenseType 
(object) 

Filter based on the license type assigned to the key

• type (string)—The data type of the filter value. Can be string or 
stringArray

• value (string/array)—Contains either a string with the license type, or 
a list of strings with license types to include

licenseStatus 
(array)

Filter based on the license status flags assigned to the key. This filter 
contains an array of objects. Each object defines a set of flags and their 
respecive value. The flags in each object are “ANDed” together. If the array 
contains multiple objects, these objects are “ORed” together. In the 
example above, the keys have to be either “not activated” and “not 
expired” OR “activated” and “not blocked”. Each object in the array can 
contain any number of the following members:

• activated (boolean)—Whether the key is set to activated

• blocked (boolean)—Whether the key is set to blocked

• expired (boolean)—Whether the key is set to expired

• allowed (boolean)—Whether the key is set to allowed

Table 12-1 • Request Properties

Property Description
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 255



Chapter 12 License Key Registry Management
Retrieving and Searching License Keys from the Key Registry
Request Headers. Response Headers, and Status Codes Properties

The following is a summary of the properties.

Response JSON Object Properties

The following is a summary of the properties inside the response JSON object.

sorting (object) Optional JSON object to apply sorting on the list of keys. Should contain the following members:

• field (string)—The field by which to sort. Can be addedDate or overQuotaCount. Default is 
addedDate.

• order (string)—The order by which to sort. Can be ascending or descending. Default is 
ascending.

paging (object) Optional JSON object to specify the maximum number of keys to retrieve and how many to skip. 
Should contain the following members:

• startAt (integer)—The number of keys to skip from the beginning. Default is 0.

• limit (integer)—The maximum number of keys to include in the response. Default is 100. 
Maximum allowed is 

Table 12-2 • Request Properties

Property Description

Request Headers • Content-Type—Can be set to application/json or text/javascript

• Accept—Should be set to text/javascript

Response Headers • Content-Type—Will contain text/javascript

Status Codes • 200 OK—OK (no error)

• 400 Bad Request—Malformed request

• 403 Forbidden—Wrong username, sessionId, session expired, or not authorized

Table 12-3 • Request Properties

Property Description

status (string) Contains OK if successful or SYNTAX ERROR or AUTH ERROR

reason (string) Present only if status is not OK. Contains error message (reason)

returnedKeysCount 
(integer) 

Present only if status is OK. Contains the number of keys returned in this response

Table 12-1 • Request Properties

Property Description
256 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4


Chapter 12 License Key Registry Management
Retrieving and Searching License Keys from the Key Registry
matchingKeysCount 
(integer) 

Present only if status is OK. Contains the total number of keys matching the supplied filters

results (array) Present only if status is OK. Contains a JSON object for each license key returned. Each object 
contains the following:

licenseKey (string) The license key as supplied to the Usage Intelligence SDK

licenseType (string) The license type such as purchased, freeware, etc.

licenseStatus (object) A JSON object containing the 4 license status flags:

• activated (boolean)—Whether the key is set to activated

• blocked (boolean)—Whether the key is set to blocked

• expired (boolean)—Whether the key is set to expired

• allowed (boolean)—Whether the key is set to allowed

expiryDate (string/null) The date the key is set to expire formatted as YYYY-MM-DD. If an 
expiry date is not set, this value contains null.

installQuota (integer) The maximum number of installations allowed to use this key

installCount (integer) The number of installations using this key

overQuotaCount 
(integer)

This field is computed by subtracting the installQuota from the 
installCount. If a key is not being over-used, this number will be a 
negative number or 0. If it is running over-quota, it will show a 
positive number.

addedDate (string) The date and time when this key was added to the key registry 
formatted as YYYY-MM-DDThh:mm:ss

autoCollected (boolean) Whether the key was automatically collected by the SDK or not 
(uploaded to the server by the vendor)

Table 12-3 • Request Properties

Property Description
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 257



Chapter 12 License Key Registry Management
Retrieving and Searching License Keys from the Key Registry
Example Request
POST /licenseKeys/listKeys HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 12345678901,
"filters": {

"overQuotaCount": {
"type": "numberRange",
"min": 1

},
"addedDate": {

"type": "dateRange",
"min": "2017-06-21"

},
"licenseStatus": [

{
"activated": false,
"expired": false

},
{

"activated": true,
"blocked": false

}

results (array)

(continued)

lastEditedDate (string/
null)

The date and time when this key was last edited formatted as 
YYYY-MM-DDThh:mm:ss. If this key has been auto-collected and 
never edited, this field will contain a null value.

lastEditedBy (object/
null)

A JSON object containing the details about the user who last 
edited this key. If this key has been auto-collected and never 
edited, this field will contain a null value. If the user who last 
edited this key was removed from Usage Intelligence after 
requesting account deletion, this will contain an empty JSON 
object.

• name (string)—The name of the user who last edited this 
key

• surname (string)—The surname of the user who last edited 
this key

• email (string)—The authentication email address of the 
user who last edited this key

notes (string)  A string value used to store reference notes about this key.

Table 12-3 • Request Properties

Property Description
258 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 12 License Key Registry Management
Retrieving and Searching License Keys from the Key Registry
]
},
"sorting": {

"field": "overQuotaCount",
"order": "descending"

},
"paging": {

"startAt": 20,
"limit": 10

}
}

Example Response
HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "OK",
"returnedKeysCount": 2,
"matchingKeysCount": 22,
"results": [

{
"licenseKey": "14e7821b-694d-4d2d-90c2-adb10c07df0c",
"licenseType": "purchased",
"licenseStatus": {

"activated": false,
"blocked": true,
"expired": false,
"allowed": false

},
"expiryDate": "2018-05-17",
"installQuota": 2,
"installCount": 27,
"overQuotaCount": 25,
"addedDate": "2017-07-24T08:18:28",
"autoCollected": false,
"lastEditedDate": "2017-07-24T08:10:19",
"lastEditedBy": {

"name": "Revulytics",
"surname": "Demonstration",
"email": "demo@revulytics.com"

}
},
{

"licenseKey": "70cda86c-46c3-4399-b358-9e762ed1fcf5",
"licenseType": "unknown",
"licenseStatus": {

"activated": false,
"blocked": true,
"expired": false,
"allowed": false

},
"expiryDate": null,
"installQuota": 1,
"installCount": 501,
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 259



Chapter 12 License Key Registry Management
Updating and Inserting New Keys in the Key Registry
"overQuotaCount": 500,
"addedDate": "2017-07-24T08:18:30",
"autoCollected": true,
"lastEditedDate": "2017-07-24T08:10:19",
"lastEditedBy": {

"name": "Revulytics",
"surname": "Demonstration",
"email": "demo@revulytics.com"

}
}

 ]
}

Updating and Inserting New Keys in the Key 
Registry

This request is used in order to update existing keys or to insert new keys into the key registry. Keys can be updated one by 
one or in batch. A single batch can contain both new and existing keys to be inserted or updated accordingly.

• Request/Response Parameters Summary

• Example Request

• Example Response

Request/Response Parameters Summary
POST /licenseKeys/updateKeys

Request JSON Object

The following is a summary of the properties inside the response JSON object.

Table 12-4 • Request Properties

Property Description

user (string) The username of your Usage Intelligence user account. 

sessionId (string) The sessionId obtained via POST /auth/login. 

productId (integer) The product ID on which this request is being done
260 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 12 License Key Registry Management
Updating and Inserting New Keys in the Key Registry
Example Request
POST /licenseKeys/updateKeys HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 12345678901,
"keyUpdates": [

{
"licenseKey": "70cda86c-46c3-4399-b358-9e762ed1fcf5",

keyUpdates (array) Array containing a number of JSON objects each containing a license key and the fields to be 
updated. The license key is the only compulsory value. All the rest are optional as you may 
send a subset of the fields. If a license key is already present in the key registry, the values that 
are not sent in this object are left untouched in the key registry. If the key is not present and an 
insert is taking place, default values are applied to the missing fields. The object members are 
as follows:

licenseKey (string) The license key to be updated or inserted to the key registry. This 
value is compulsory.

licenseType (string) The license type such as purchased, freeware, etc.. Default is 
unknown.

licenseStatus (object) A JSON object containing the 4 license status flags or a subset:

• activated (boolean)—Whether the key is to be set as 
activated. Default is false.

• blocked (boolean)—Whether the key is to be set as blocked. 
Default is false.

• expired (boolean)—Whether the key is to be set as expired. 
Default is false.

• allowed (boolean)—Whether the key is to be set as allowed. 
Default is false.

expiryDate (string/null) The date the key is set to expire formatted as YYYY-MM-DD. A null 
value may also be sent to set this field as *null. Default is null.

installQuota (integer) The maximum number of installations allowed to use this key. 
Default is *1.

notes (string) A string value used to store reference notes about this key. 
Default is a zero-length (empty) string.

Table 12-4 • Request Properties

Property Description
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 261



Chapter 12 License Key Registry Management
Updating and Inserting New Keys in the Key Registry
"licenseType": "purchased"
},
{

"licenseKey": "14e7821b-694d-4d2d-90c2-adb10c07df0c",
"licenseStatus": {

"allowed": true,
"activated": true,
"expired": false

},
"expiryDate": "2017-10-31"

}
]

}

Example Response
HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "OK",
"insertedKeys": 0,
"rejectedKeys": 0,
"updatedKeys": 2

}

262 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



13

Custom Event Tracking
Custom Event Tracking works in a similar way to Exception Tracking. In both cases, data can either be previewed by 
retrieving the latest data in JSON format or else, zipped CSV files can be downloaded for offline processing.

• Latest Data Preview

• Downloadable File Listing

• Download Zipped CSV File

Latest Data Preview
This request returns the last few custom events that have been collected including the product and system metadata of the 
client on which each event was collected in JSON format.

• Request/Response Parameters Summary

• Results Format

Request/Response Parameters Summary
POST /customEventTracking/getLastLines
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 263



Chapter 13 Custom Event Tracking
Latest Data Preview
The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Results Format
The results element is an array containing the actual results. Each event is presented as a JSON object inside the results 
array. This is the same data contained in the downloadable zipped CSV files.

In the following example, the last 2 lines in the CSV are being requested (the lineCount property is set to 2)

Example Request
POST /customEventTracking/getLastLines HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 2376158762,
"lineCount": 2

}

Example Response
HTTP/1.1 200 OK
Content-Type: application/json

{
 "status":"OK",

Table 13-1 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. Required 
only for non-cookie authentication.

• sessionId (string)—The sessionId obtained via POST /auth/login. Required only for 
non-cookie authentication.

• productId (integer)—The product ID on which this request is being done.

• lineCount (string)—The number of lines/events to retrieve.

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• fieldNames (object)—Maps the key names in the result object with a user friendly 
name

• results (array)—Contains the results as requested represented as a JSON array. 
The result format is described below.
264 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 13 Custom Event Tracking
Latest Data Preview
 "fieldNames":{
"timestamp":"Timestamp",
"clientId":"Client ID",
"prodEdition":"Edition",
"prodVersion":"Version",
"prodBuild":"Build",
"prodLanguage":"Language",
"licenseType":"License Type",
"licenseStatus.allowed":"Key Allowed",
"licenseStatus.blocked":"Key Blocked",
"licenseStatus.activated":"Key Activated",
"licenseStatus.expired":"Key Expired",
"os.version":"OS Type",
"osWordLength":"OS Architecture",
"osLanguage":"OS Language",
"cpuType":"CPU Type",
"cpuCores":"CPU Cores",
"ram":"RAM",
"displayCount":"Number of Monitors",
"resolution":"Screen Resolution",
"dotNetVersion": ".NET Versions",
"gpu.model": "GPU",
"formFactor":"Computer Type",
"geography.country":"Country",
"geography.usState":"US State",
"event.category":"Event Category",
"event.name":"Event Type",
"event.data":"Event Data"

 },
 "results":[

{
 "timestamp":"2017-11-22T12:41:19",
 "clientId":"AE99797E4B480921",
 "prodEdition":"Standard",
 "prodVersion":"3.1",
 "prodBuild":"951",
 "prodLanguage":"German",
 "licenseType":"purchased",
 "licenseStatus.allowed":"N",
 "licenseStatus.blocked":"N",
 "licenseStatus.activated":"N",
 "licenseStatus.expired":"N",
 "os.version":"MS Win XP",
 "osWordLength":"64-bit",
 "osLanguage":"German",
 "cpuType":"Intel Core i7",
 "cpuCores":"4",
 "ram":"8192",
 "displayCount":"1",
 "resolution":"1920x1080",
 "dotNetVersion": "2.0;3.5 SP1;3.0 SP2",
 "gpu.model": "Intel HD Graphics 620",
 "formFactor":"Desktop",
 "geography.country":"DE",
 "geography.usState":"",
 "event.category":"File Operations",
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 265



Chapter 13 Custom Event Tracking
Downloadable File Listing
 "event.name":"Save",
 "event.data":"final21.doc"

},
{
 "timestamp":"2017-11-22T14:51:54",
 "clientId":"2958A7C5911ABF77",
 "prodEdition":"Premium",
 "prodVersion":"2",
 "prodBuild":"719",
 "prodLanguage":"English",
 "licenseType":"purchased",
 "licenseStatus.allowed":"N",
 "licenseStatus.blocked":"N",
 "licenseStatus.activated":"N",
 "licenseStatus.expired":"N",
 "os.version":"MS Win Vista",
 "osWordLength":"64-bit",
 "osLanguage":"English",
 "cpuType":"Intel Pentium",
 "cpuCores":"2",
 "ram":"1024",
 "displayCount":"1",
 "resolution":"1920x1080",
 "dotNetVersion": "2.0;3.5 SP1;3.0 SP2",
 "gpu.model": "Intel HD Graphics 620",
 "formFactor":"Desktop",
 "geography.country":"US",
 "geography.usState":"IL",
 "event.category":"File Operations",
 "event.name":"Open",
 "event.data":"testfl.doc"

}
 ]

}

Downloadable File Listing
This request returns the list of zipped CSV files that are on the server. This list is to be used to see what files are available for 
download and then be able to request files for downloading.

• Request/Response Parameters Summary

• Example Request/Response

Request/Response Parameters Summary
POST /customEventTracking/listFiles
266 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 13 Custom Event Tracking
Downloadable File Listing
The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Example Request/Response
This section includes and example request and an example response.

Example Request
POST /customEventTracking/listFiles HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 2376158762

}

Example Response
HTTP/1.1 200 OK
Content-Type: application/json

Table 13-2 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. 

• sessionId (string)—The sessionId obtained via POST /auth/login. 

• productId (integer)—The product ID on which this request is being done.

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• openDailyFiles (array)—Array of JSON objects containing information about daily 
files that are not finalized yet. This normally contains only 1 element which refers to 
today’s file. This file is still being used to collect data, and therefore, if it is 
downloaded now, the contents would be different than if it is downloaded later, 
even though the file name is the same. The objects in this array do not contain a 
compressedSizeKB element since this is constantly changing. Also, the objects 
contain a boolean property named isAvailable. If this file is currently being 
processed by the system, it may be unavailable for download, and therefore this 
value would be false.

• dailyFiles (array)—Array of JSON objects containing information about daily files 
that are finalized. These files can be requested for download.

• monthlyFiles (array)—Array of JSON objects containing information about 
monthly files. These files can be requested for download.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 267



Chapter 13 Custom Event Tracking
Download Zipped CSV File
{
 "status":"OK",
 "openDailyFiles":[

{
 "fileName":"2376158762_cust_2017-11-24.zip",
 "uncompressedSizeKB":1.317,
 "fileDate":"2017-11-24",
 "isAvailable":true

}
 ],
 "dailyFiles":[

{
 "fileName":"2376158762_cust_2017-11-22.zip",
 "uncompressedSizeKB":3.055,
 "compressedSizeKB":1.018,
 "fileDate":"2017-11-22"

},
{
 "fileName":"2376158762_cust_2017-11-23.zip",
 "uncompressedSizeKB":2.129,
 "compressedSizeKB":0.881,
 "fileDate":"2017-11-23"

}
 ],
 "monthlyFiles":[

{
 "fileName":"2376158762_cust_2017-11-01_to_2017-11-23.zip",
 "uncompressedSizeKB":4.897,
 "compressedSizeKB":1.273,
 "fileStartDate":"2017-11-01",
 "fileStopDate":"2017-11-23"

}
 ]

}

Download Zipped CSV File
In order to download the data files, the file needs to be requested to the API which returns a secure URL from which the file 
can be downloaded.

POST /customEventTracking/getDownloadUrl
268 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 13 Custom Event Tracking
Download Zipped CSV File
The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Example Request/Response
Example Request
POST /customEventTracking/getDownloadUrl HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 2376158762,
"fileName": "2376158762_cust_2017-11-23.zip"

}

Example Response
HTTP/1.1 200 OK
Content-Type: application/json

{
 "status":"OK",
 "downloadUrl":"https://sh1.revulytics.com/downloadExc/1ij4buyJtsTrx"

}

Table 13-3 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. 

• sessionId (string)—The sessionId obtained via POST /auth/login. 

• productId (integer)—The product ID on which this request is being done.

• fileName (string)—The filename of the file being requested to download

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• downloadUrl (string)—The one-time URL used to download the zip file
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 269



Chapter 13 Custom Event Tracking
Download Zipped CSV File
270 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



14

Exception Tracking
Exception Tracking works in a similar way to Custom Event Tracking. In both cases, data can either be previewed by 
retrieving the latest data in JSON format or else, zipped CSV files can be downloaded for offline processing.

• Latest Data Preview

• Downloadable File Listing

• Download Zipped CSV File

Latest Data Preview
This request returns the last few exceptions that have been collected including the product and system metadata of the 
client on which each exception was collected in JSON format.

• Request/Response Parameters Summary

• Results Format

Request/Response Parameters Summary
POST /exceptionTracking/getLastLines
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 271



Chapter 14 Exception Tracking
Latest Data Preview
The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Results Format
The results element is an array containing the actual results. Each exception is presented as a JSON object inside the 
results array. This is the same data contained in the downloadable zipped CSV files.

In the following example, the last 2 lines in the CSV are being requested (the lineCount property is set to 2)

Example Request
POST /exceptionTracking/getLastLines HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 2376158762,
"lineCount": 2

}

Example Response
HTTP/1.1 200 OK
Content-Type: application/json

{
 "status":"OK",

Table 14-1 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. Required 
only for non-cookie authentication.

• sessionId (string)—The sessionId obtained via POST /auth/login. Required only for 
non-cookie authentication.

• productId (integer)—The product ID on which this request is being done.

• lineCount (string)—The number of lines/events to retrieve.

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• fieldNames (object)—Maps the key names in the result object with a user friendly 
name

• results (array)—Contains the results as requested represented as a JSON array. 
The result format is described below.
272 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 14 Exception Tracking
Latest Data Preview
 "fieldNames":{
"timestamp":"Timestamp",
"clientId":"Client ID",
"prodEdition":"Edition",
"prodVersion":"Version",
"prodBuild":"Build",
"prodLanguage":"Language",
"licenseType":"License Type",
"licenseStatus.allowed":"Key Allowed",
"licenseStatus.blocked":"Key Blocked",
"licenseStatus.activated":"Key Activated",
"licenseStatus.expired":"Key Expired",
"os.version":"OS Type",
"osWordLength":"OS Architecture",
"osLanguage":"OS Language",
"cpuType":"CPU Type",
"cpuCores":"CPU Cores",
"ram":"RAM",
"displayCount":"Number of Monitors",
"resolution":"Screen Resolution",
"dotNetVersion": ".NET Versions",
"gpu.model": "GPU",
"formFactor":"Computer Type",
"geography.country":"Country",
"geography.usState":"US State",
"exception.class":"Exception Class",
"exception.method":"Exception Method",
"exception.message":"Exception Message",
"exception.stackTrace":"Exception Stack Trace"

 },
 "results":[

{
 "timestamp":"2017-11-22T01:38:07",
 "clientId":"A966094C61A6C181",
 "prodEdition":"Standard",
 "prodVersion":"2",
 "prodBuild":"719",
 "prodLanguage":"English",
 "licenseType":"purchased",
 "licenseStatus.allowed":"N",
 "licenseStatus.blocked":"N",
 "licenseStatus.activated":"N",
 "licenseStatus.expired":"N",
 "os.version":"MS Win XP",
 "osWordLength":"64-bit",
 "osLanguage":"English",
 "cpuType":"Intel Core i7",
 "cpuCores":"4",
 "ram":"2048",
 "displayCount":"1",
 "resolution":"1280x1024",
 "dotNetVersion": "2.0;3.5 SP1;3.0 SP2",
 "gpu.model": "Intel HD Graphics 620",
 "formFactor":"Desktop",
 "geography.country":"FR",
 "geography.usState":"",
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 273



Chapter 14 Exception Tracking
Downloadable File Listing
 "exception.class":"File",
 "exception.method":"openFile",
 "exception.message":"No such file or directory",
 "exception.stackTrace":"Traceback (most recent call last):\r\n File \"main.py\", line 1, in 

<module>\r\nIOError: [Errno 2] No such file or directory: 'full-template.doc'"
},
{
 "timestamp":"2017-11-22T01:38:07",
 "clientId":"A966094C61A6C181",
 "prodEdition":"Standard",
 "prodVersion":"2",
 "prodBuild":"719",
 "prodLanguage":"English",
 "licenseType":"purchased",
 "licenseStatus.allowed":"N",
 "licenseStatus.blocked":"N",
 "licenseStatus.activated":"N",
 "licenseStatus.expired":"N",
 "os.version":"MS Win XP",
 "osWordLength":"64-bit",
 "osLanguage":"English",
 "cpuType":"Intel Core i7",
 "cpuCores":"4",
 "ram":"2048",
 "displayCount":"1",
 "resolution":"1280x1024",
 "dotNetVersion": "2.0;3.5 SP1;3.0 SP2",
 "gpu.model": "Intel HD Graphics 620",
 "formFactor":"Desktop",
 "geography.country":"FR",
 "geography.usState":"",
 "exception.class":"File",
 "exception.method":"openFile",
 "exception.message":"No such file or directory",
 "exception.stackTrace":"Traceback (most recent call last):\r\n File \"main.py\", line 1, in 

<module>\r\nIOError: [Errno 2] No such file or directory: 'full-template.doc'"
}

 ]
}

Downloadable File Listing
This request returns the list of zipped CSV files that are on the server. This list is to be used to see what files are available for 
download and then be able to request files for downloading.

• Request/Response Parameters Summary

• Example Request/Response

Request/Response Parameters Summary
POST /exceptionTracking/listFiles
274 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 14 Exception Tracking
Downloadable File Listing
The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Example Request/Response
This section includes an example request and an example response.

Example Request
POST /exceptionTracking/listFiles HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 2376158762

}

Example Response
HTTP/1.1 200 OK
Content-Type: application/json

Table 14-2 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. 

• sessionId (string)—The sessionId obtained via POST /auth/login. 

• productId (integer)—The product ID on which this request is being done.

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• openDailyFiles (array)—Array of JSON objects containing information about daily 
files that are not finalized yet. This normally contains only 1 element which refers to 
today’s file. This file is still being used to collect data, and therefore, if it is 
downloaded now, the contents would be different than if it is downloaded later, 
even though the file name is the same. The objects in this array do not contain a 
compressedSizeKB element since this is constantly changing. Also, the objects 
contain a boolean property named isAvailable. If this file is currently being 
processed by the system, it may be unavailable for download, and therefore this 
value would be false.

• dailyFiles (array)—Array of JSON objects containing information about daily files 
that are finalized. These files can be requested for download.

• monthlyFiles (array)—Array of JSON objects containing information about 
monthly files. These files can be requested for download.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 275



Chapter 14 Exception Tracking
Download Zipped CSV File
{
 "status":"OK",
 "openDailyFiles":[

{
 "fileName":"2376158762_exc_2017-11-24.zip",
 "uncompressedSizeKB":2.105,
 "fileDate":"2017-11-24",
 "isAvailable":true

}
 ],
 "dailyFiles":[

{
 "fileName":"2376158762_exc_2017-11-22.zip",
 "uncompressedSizeKB":3.673,
 "compressedSizeKB":1.072,
 "fileDate":"2017-11-22"

},
{
 "fileName":"2376158762_exc_2017-11-23.zip",
 "uncompressedSizeKB":3.587,
 "compressedSizeKB":1.081,
 "fileDate":"2017-11-23"

}
 ],
 "monthlyFiles":[

{
 "fileName":"2376158762_exc_2017-11-01_to_2017-11-23.zip",
 "uncompressedSizeKB":6.937,
 "compressedSizeKB":1.344,
 "fileStartDate":"2017-11-01",
 "fileStopDate":"2017-11-23"

}
 ]

}

Download Zipped CSV File
In order to download the data files, the file needs to be requested to the API which returns a secure URL from which the file 
can be downloaded.

POST /exceptionTracking/getDownloadUrl
276 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 14 Exception Tracking
Download Zipped CSV File
The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Example Request/Response
This section includes an example request and an example response.

Example Request
POST /exceptionTracking/getDownloadUrl HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 2376158762,
"fileName": "2376158762_exc_2017-11-23.zip"

}

Example Response
HTTP/1.1 200 OK
Content-Type: application/json

{
 "status":"OK",
 "downloadUrl":"https://sh1.revulytics.com/downloadExc/1ij4buyJtsTrx"

}

Table 14-3 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. 

• sessionId (string)—The sessionId obtained via POST /auth/login. 

• productId (integer)—The product ID on which this request is being done.

• fileName (string)—The filename of the file being requested to download

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• downloadUrl (string)—The one-time URL used to download the zip file
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 277



Chapter 14 Exception Tracking
Download Zipped CSV File
278 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



15

Client Profile Report
The aim of this report is to retrieve a subset or all of the data about a client or a set of clients. This can also be used as a 
means to export all data about all clients by paging through all the data and storing the returned data for offline 
processing.

• Request/Response Parameters Summary

• retDailyData Property

• properties Property

• Global Filters

• Results Format

• Example Request/Response

Request/Response Parameters Summary
POST /reporting/clientPropertyList
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 279



Chapter 15 Client Profile Report
retDailyData Property
The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

retDailyData Property
The retDailyData property is to be used when daily data is being requested as part of the report. If this is not present, the 
only data that is returned is the last known values for each client being included. This property is expected to contain an 
object made up of the following properties:

• startDate (string)—The first day to include in the daily data. This is to be formatted as YYYY-MM-DD.

• stopDate (string)—The last day to include in the daily data. This is to be formatted as YYYY-MM-DD.

• properties (array)—Array of strings containing the list of properties to be included in the daily data.

Table 15-1 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. Required 
only for non-cookie authentication.

• sessionId (string)—The sessionId obtained via POST /auth/login. Required only for 
non-cookie authentication.

• productId (integer)—The product ID on which this request is being done.

• startAtClientId (string)—Optional property to specify the client ID to start at for 
paging purposes.

• properties (array)—Array of strings containing the list of properties to be included 
in the current data.

• retDailyData (object)—Optional parameter used if the daily data is being 
requested. The format for this object is described below.

• globalFilters (object)—Optional JSON object containing the filters to be applied to 
the available data. Details about these filters can be found in Global Filters.

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• results (array)—Contains the results as requested represented as a JSON object. 
The result format is described below.

• reachedEnd (boolean)—Boolean value showing whether the end has been reached 
or not. This value is false if there are remaining clients which can be retrieved by 
requesting more pages.

• nextClientId (string)—Returned only if reachedEnd is false. This value can be 
passed to the startAtClientId property to request the next page.
280 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 15 Client Profile Report
properties Property
properties Property
This property can be present both in the root request object and also in the retDailyData object. In both cases, this 
property is optional. If this property is not present in the root object, the only current property that is returned is the client 
ID. Similarly, if this property is not present in the retDailyData object, the daily data would contain only the dates on 
which each client was active without any further details about what the value of client data properties was on each day.

• Current Data Properties

• Daily Data Properties

Current Data Properties
The following properties can be included in the current (root) properties array:

machineId
optOut.historical
optOut.current
backOff.historical
backOff.current
prodEdition
prodVersion
prodLanguage
prodBuild
licenseType
licenseStatus.activated
licenseStatus.blocked
licenseStatus.expired
licenseStatus.allowed
os.platform
os.version
os.edition
geography.continent
geography.country
geography.usState
cpuType
ram
resolutionWidth
resolutionHeight
osWordLength
displayCount
cpuCores
licenseKey
formFactor
dotNetVersion
lifetimeSessionCount
lifetimeRuntimeMinutes
gpu.vendor
gpu.model
javaVersion
javaVmVersion
javaVmName
javaVendor
javaRuntime
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 281



Chapter 15 Client Profile Report
Global Filters
javaGraphics
vm
reachOutDeliveries.auto
reachOutDeliveries.manual
lifetimeEventUsage

Note • licenseKey requires a special user permission to filter by license key.

Daily Data Properties
The following properties can be included in the daily (inside retDailyData) properties array:

prodEdition
prodVersion
prodLanguage
prodBuild
licenseType
licenseStatus.activated
licenseStatus.blocked
licenseStatus.expired
licenseStatus.allowed
os.platform
os.version
os.edition
geography.continent
geography.country
geography.usState

Global Filters
Most of the available filter properties are string-based. This means that when applying a filter, the requested field can be 
represented as a string, stringArray or regex. There are also some filters which are numeric. These filters should be 
represented as number or numberRange.

• String-Based Filters

• Numeric Filters

• Date Range Filters

• Boolean Filters

• Special Filters

• <NULL> Values in Global Filters

String-Based Filters
The following properties are stored as strings:

machineId *
clientId *
282 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 15 Client Profile Report
Global Filters
prodVersion
prodEdition
prodBuild
prodLanguage
licenseType
formFactor *
osLanguage
osWordLength *
cpuType *
dotNetVersion *
javaVersion *
javaVendor *
javaRuntime *
javaGraphics *
javaVmVersion *
javaVmName *
vm *
C01 .. C20 (Custom properties)
licenseKey *

Note • licenseKey requires a special user permission to be used as a filter.

Note • Properties marked with an asterisk (*) are based on the current (latest known) values.

The type field in the above filters needs to be string, stringArray or regex. A value field is always required. The contents 
of this field should be according to the specified type. 

• If string is specified, then the value field must contain a single string that needs to be matched precisely with the 
stored data. 

• If stringArray is specified, then the value field must contain an array of strings where one of which needs to match 
precisely with the stored data. 

• If specifying a regex, the value field should contain a string which is treated as a regular expression and the stored 
data will be matched against it using regular expression rules.

Example Filter Using a String Value

In this example, the product build value needs to be exactly “3014.int-12214”:

{
"prodBuild":

{
"type": "string",
"value": "3014.int-12214"

}
}

Example Filter Using a String Array

In this example, the product build value needs to be either “3014.int-12214”, “3017.enx-57718”, or “4180.vrx-81059”. Note 
that since the type is declared as stringArray, the value field needs to contain an array. Consider all elements in the array to 
have an OR logical expression between them.:
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 283



Chapter 15 Client Profile Report
Global Filters
{
"prodBuild":

{
"type": "stringArray",
"value": ["3014.int-12214", "3017.enx-57718", "4180.vrx-81059"]

}
}

Example Filter Using a Regular Expression

In this example, the product build value needs to start with “30” and end with “18” whilst having 10 characters in between:

{
 "prodBuild":

 {
 "type": "regex",
 "value": "^30.{10}18$"

 }
}

Numeric Filters
The following properties are stored as numeric values:

cpuCores *
displayCount *
ram *
resolutionWidth *
resolutionHeight *
lifetimeRuntimeMinutes *
lifetimeSessionCount *
screenPpi *
javaVmRam *

Note • Properties marked with an asterisk (*) are based on the current (latest known) values.

The type field in the above filters needs to be number or numberRange. 

• If number is specified, then a value field must also be present. The value field should contain a number, which may 
contain a decimal point if required. 

• If numberRange is specified, then the value field should NOT be used. Instead, the properties min and max are to be 
used. These refer to the minimum and maximum number to be included in the report. If only one limit needs to be set, 
the other property is to be left out. Therefore, if you want to include installations with up to 2 display devices, you 
would not specify a min value, but instead specify only a max and set it as 2.

Example Filter Using a Number Value

In this example, the number of display devices needs to be exactly 3:

{
"displayCount":

{
"type": "number",
284 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 15 Client Profile Report
Global Filters
"value": 3
}

}

Example Filter Using a Number Range Value

In this example, the RAM needs to be between 1025MB and 4096MB (both included):

{
"ram":

{
"type": "numberRange",
"min": 1025,
"max": 4096

}
}

Date Range Filters
The following properties are stored as dates:

dateInstalled
dateLastSeen

The type field in the above filters needs to be date or dateRange. 

• If date is specified, then a value field must also be present. The value field should contain a date. 

• If dateRange is specified, then the value field should NOT be used. Instead, the properties min and max are to be used. 
These refer to the minimum and maximum dates to be included in the report. If only one limit needs to be set, the 
other property is to be left out. 

In the following example, users installed after January 1st 2018 are to be shown:

{
 "dateInstalled":

 {
 "type": "dateRange", 
"min": "2018-01-01"

 }
}

Note • All dates must be in ISO 8601 format.

Boolean Filters
The following property is stored as boolean:

touchScreen

The type field in the above filters needs to be boolean. The value must be true or false. In the following filter, clients with a 
touch screen are being requested.

{

Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 285



Chapter 15 Client Profile Report
Global Filters
"touchScreen":
{

"type": "boolean",
"value": true

}
}

Special Filters
Some filters need to be represented in a special format due to their unique requirements. These special filters are:

• Special Filter: licenseStatus

• Special Filter: os

• Special Filter: geography

• Special Filter: gpu

• Special Filters: optOut and backOff

• Special Filter: lifetimeEventUsage

• Special Filter: reachOutDeliveries

Special Filter: licenseStatus
The licenseStatus filter is made up of 4 sub-values: activated, blocked, expired and allowed. These are presented as 
boolean values. 

Unlike other filters, this filter is presented as an array of JSON objects. Each object can contain a subset (or all) of these 4 
boolean values. 

Consider the following example. In this example, for a client to be included, the license has to either be activated AND 
allowed, or else it can be not allowed AND expired. In other words, ( (activated AND allowed) OR ((NOT)allowed AND 
expired) ).

{
"licenseStatus":

[
{

"activated": true,
"allowed": true

},
{

"allowed": false,
"expired": true

}
]

}

286 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 15 Client Profile Report
Global Filters
Special Filter: os
The os filter is made up of 3 granularity levels. These are platform, version, and edition. These are meant to split the OS 
name into levels of detail as required by the user. Consider the following:

• platform: Microsoft Windows

• version: Microsoft Windows 7

• edition: Microsoft Windows 7 Professional

If a filter is set on the version “Microsoft Windows 7”, the result would include all editions of Windows 7. One or more of 
these granularity levels may be specified. If more than 1 granularity level is specified, the values are ORed together.

In the following example, all editions of “Microsoft Windows 7” are included, and also “Microsoft Windows Vista Home 
Premium”:

{
"type": "string",
"version": "Microsoft Windows 7",
"edition": "Microsoft Windows Vista Home Premium"

}

In the following example, the type is stringArray. Note that an array needs to be passed if the type is set as such, even if it 
is to contain only 1 element. In this case, the version can be either “Microsoft Windows 7” or “Microsoft Windows 8” (which 
are ORed together). Also, clients running on “Microsoft Windows XP Professional” are to be included.

{
"type": "stringArray",
"version": ["Microsoft Windows 7", "Microsoft Windows 8"],
"edition": ["Microsoft Windows XP Professional"]

}

Special Filter: geography
The geography filter is made up of 3 granularity levels. These are continent, country, and usState. The usState value applies 
only to United States. Continents and countries are presented in 2-letter codes. Countries follow ISO standard 3166-1 
alpha-2. US states are presented in ISO 3166-2:US format.

In the following example, the clients have to be either:

• In the continents Asia or Oceania

• In the country Germany

• In the US states New York, New Jersey, or Kansas

{
"type": "stringArray",
"continent": ["AS", "OC"],
"country": ["DE"],
"usState": ["US-NY", "US-NJ", "US-KS"]

}

Important • In this filter, the type can be string or stringArray. Regular expressions are not supported in geography filters.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 287



Chapter 15 Client Profile Report
Global Filters
Special Filter: gpu
The gpu filter is made up of 2 granularity levels. These are vendor and model. Both are represented as string values.

In the following example, the clients have to have a GPU:

• From the vendors NVIDIA or Intel

• With the model AMD Radeon HD 4600

{
"type": "stringArray",
"vendor": ["NVIDIA", "Intel"],
"model": ["AMD Radeon HD 4600"]

}

Special Filters: optOut and backOff
The opt-out mechanism was introduced in SDK version 5.1.0. With this feature, vendors can have their application report to 
the Usage Intelligence servers that a user does not want to be tracked. Using this property, vendors can filter out 
installations that were opted-out. 

Similarly, backoff filtering was introduced with version 5.0.0. Backoff is when a product account runs over-quota and the 
server starts rejecting data. Although filtering for backed-off installations was introduced with version 5, it was also 
backported to previous versions. However, when a new installation with an SDK prior to version 5 tries to register with the 
server and is rejected, it is not marked as being once backed-off when it is eventually accepted by the server. With version 5 
onwards, the server flags an installation as being historically backed-off in such cases.

Both backOff and optOut filters are made up of 2 boolean sub-values: historical and current. 

• The historical value refers to installations that were once backed-off or opted-out. These may include installations 
that are still currently backed-off or opted-out. 

• The current value refers to the status during the last time that the client called the server. Therefore, if an installation 
was opted-out yesterday but got opted-in today, it will be marked as historically opted-out but not currently opted-
out.

In the following example, for a client to be included, the optOut status has to either be historical AND not current, or 
else it can be not historical (i.e. users have to be currently opted-in but used to be opted-out at some point or never 
opted out).

{
"optOut":

[
{

"historical": true,
"current": false

},
{

"historical": false
}

]
}

288 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 15 Client Profile Report
Global Filters
Special Filter: lifetimeEventUsage
Using lifetime event usage filters, clients can be filtered based on whether a particular event or set of events occurred or 
not within the client’s lifetime. Alternatively, one can set a filter based on the number of times an event has occurred.

In the following example, clients that are included must have done the “File Operations - Open” event at least 5 times to be 
counted.

{
 "category": "File Operations",
 "name": "Open",
 "min": 5

}

In the following example, clients must have done either “File Operations - Open” or “File Operations - Save” for a combined 
total of between 10 to 50 times.

{
"combiArray": [

 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Open"

 },
 {
 "categoryType": "string",
 "nameType": "string",
 "category": "File Operations",
 "name": "Save",

 }
],

"min": 10,
"max": 50

}

In the following example, clients must have done any event within the “File Operations” category for a combined total of 
not more than 100 times. This is done using a regular expression in the name.

{
"combiArray": [

{
"categoryType": "string",
"nameType": "regex",
"category": "File Operations",
"name": ".*"

}
 ],

"max": 100
}

Special Filter: reachOutDeliveries
Using ReachOut delivery filters, clients can be filtered based on whether a particular ReachOut message or a combination 
of ReachOut messages were delivered or not within the client’s lifetime.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 289



Chapter 15 Client Profile Report
Global Filters
The filter consists of a JSON array that includes one or more objects. Each object is a combination of delivered and 
undelivered campaigns, and the different combinations are ORed together. Therefore, it is possible to show users that 
either received ReachOut message 1 but not 2, or else received 3 but not 4 as in the following example:

In the following example, we are looking for clients who either received campaign 1 but not 2, OR received campaign 2 but 
not 3.

[
 {"auto": {"delivered": ["1"], "undelivered":["2"]}},
 {"auto": {"delivered": ["2"], "undelivered":["3"]}}

]

The above example contains only “auto” ReachOut campaigns. Manual campaigns can be specified using “manual” 
instead of “auto” as in the above example. Each object can contain a mix of “auto” and “manual” campaigns.

<NULL> Values in Global Filters
Most of the available properties can include null values. There are different reasons why a value would be null. When these 
are properties that are set by the application, the possible reasons why a value would be null are cases where the value has 
not been set by the application (such as prodBuild never being set), and cases where values are set to an empty string (“”) 
or to a string containing “<NULL>”. 

One other reason is that although these values have been set, the SDK has not yet had time to sync with the servers to 
provide this new information. In cases where the properties are set automatically such as hardware or OS related 
information, the values would be null if the SDK failed to retrieve that value from the OS or if the server failed to identify the 
value retrieved by the SDK. 

Other reasons include cases where Java version is requested from an application that does not use the Java SDK, US state 
is requested for users who are not running within the US, etc.

The following are the properties that support null values:

prodVersion
prodEdition
prodBuild
prodLanguage
machineId
formFactor
vm
cpuType
cpuCores
ram
resolutionWidth
resolutionHeight
javaVersion
javaVmVersion
javaVmName
javaVendor
javaRuntime
javaGraphics
osLanguage
licenseKey
C01 .. C20 (Custom properties)
os
geography
290 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 15 Client Profile Report
Global Filters
gpu

Null values can be requested either on their own or as part of a filter containing other values.

The following example would return only cases where the prodVersion is null:

{
"prodVersion":

{
"includeNull": true

}
}

The following example would return cases where the prodVersion is either 1.1, 1.2 or null:

{
"prodVersion":

{
"type": "stringArray",
"value": ["1.1", "1.2"],
"includeNull": true

}
}

By default, when specifying a filter, null values would not be included. Therefore, in the following example, only clients 
with prodVersion set to 1.1 or 1.2 will be included, while null values are excluded:

{
"prodVersion":

{
"type": "stringArray",
"value": ["1.1", "1.2"]

}
}

However, if no filter is specified, then nulls are included by default. Therefore, if you want to include any value of 
prodVersion as long as it is not null, a prodVersion filter needs to be included as follows:

{
"prodVersion":

{
"type": "regex",
"value": ".*",
"includeNull": false

}
}

In the case of filters that use sub-properties (os, geography, and gpu), the includeNull filter is to be included in the sub-
property and applies to that specific sub-property only. In order to be able to include the includeNull property, instead of 
providing the value as a string or an array of strings, the value of the sub-property must be a JSON object that contains a 
property named “value”, and another named “includeNull”. Each of these properties is optional, but at least one of them 
must be present.

In the case of geography, this has a very particular meaning. Requesting for null “country” value does not return all cases 
where the country could not be retrieved, but only cases where the continent could be retrieved but the country could not. 
Similarly, requesting null “usState” returns cases where the continent and country could be retrieved but the US state 
could not. This does not include clients that are not situated in the US. If you are interested in finding clients where we 
could not detect any geographical data, the includeNull filter needs to be applied in the continent sub-property.
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 291



Chapter 15 Client Profile Report
Results Format
In the following example, we are requesting cases where we know that the client is within the US but the state could not be 
identified:

{
"geography":

{
"type": "string",
"country": "US",
"usState":

{
"includeNull": true

}
}

}

In the following example, we are requesting cases where the GPU is either “NVIDIA”, “AMD” or null (unidentified):

{
"gpu":

{
"type": "stringArray",
"vendor":

{
"value": ["NVIDIA", "AMD"],
"includeNull": true

}
}

}

Results Format
The results consist of an array of JSON objects. Each object contains data about 1 single client. Each of these objects 
contain a clientId property as minimum. All other properties are optional and are dependent on the properties that were 
requested in the properties field, and whether reqDailyData has been specified. The current data (i.e. the last known 
values for each requested property for each client) is presented as properties in this object. The values are either strings, 
numbers or boolean values - depending on what each property contains.

If requested, the daily data is inside a property in the above mentioned object named dailyData. The value of this property 
is an array of objects - one object for each day on which the installation was active. As a minimum, each of these objects 
contain a date property formatted as YYYY-MM-DD. The rest of the properties depend on what properties were requested in 
the properties value of reqDailyData.

The reachOutDeliveries.auto and reachOutDeliveries.manual properties contain an array of objects. Each object refers 
to 1 reachOut campaign delivery. These objects contain 2 properties: reachoutID and name. The reachoutId is a numeric 
value given to each reachOut campaign as an identifier. The name is the campaign name as specified by the creator of the 
campaign. In case the reachOut campaign had been deleted, the value of the name property will be null.

The lifetimeEventUsage property contains data about all events performed by the client throughout the client lifetime. 
This is an array of objects. Each object contains 3 properties - eventCategory, eventName, and eventCount.
292 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 15 Client Profile Report
Example Request/Response
Example Request/Response
In the following example, we are requesting the following properties: geography.country, ram, lifetimeEventUsage, and 
reachOutDeliveries.auto. We are requesting daily data for 1 - 10 January 2018, and asking for 1 property in the daily data: 
prodVersion. We are also filtering for 1 single client ID.

Example Request
POST /reporting/clientPropertyList HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 12345678901,
"globalFilters":

{
"clientId":

{
"type": "string",
"value": "0AC28257D3E9F271"

}
},

"properties":
[

"geography.country",
"ram",
"lifetimeEventUsage",
"reachOutDeliveries.auto"

],
"retDailyData":

{
"startDate": "2018-01-01",
"stopDate": "2018-01-10",
"properties":

[
"prodVersion"

]
}

}

Example Response
HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "OK",
"results":

[
{

"clientId": "0AC28257D3E9F271",
"geography.country": "US",
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 293



Chapter 15 Client Profile Report
Example Request/Response
"ram": 8192,
"lifetimeEventUsage":

[
{

"eventCategory": "File Operations",
"eventName": "Open",
"eventCount": 42

},
{

"eventCategory": "File Operations",
"eventName": "Delete",
"eventCount": 5

}
],

"reachOutDeliveries.auto":
[

{
"reachoutID": 7,
"name": "Welcome message"

},
{

"reachoutID": 15,
"name": "Upgrade to premium"

}
],

"dailyData":
[

{"date": "2018-01-03", "prodVersion": "1.1"},
{"date": "2018-01-04", "prodVersion": "1.1"},
{"date": "2018-01-08", "prodVersion": "1.1"},
{"date": "2018-01-10", "prodVersion": "1.4"}

]
}

],
"reachedEnd": true

}

294 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



16

Raw Data Export
Raw Data Export functionality needs to be enabled on your product account for this functionality to work. Downloading of 
raw data export files works in a similar way to Custom Event Tracking. In both cases, the list of files can be retrieved, and 
then a temporary URL may be requested for downloading.

• Downloadable File Listing

• Download Files

Downloadable File Listing
This request returns the list of zipped files that are on the server. This list is to be used to see what files are available for 
download and then be able to request files for downloading.

• Request/Response Parameters Summary

• Example Request/Response

Request/Response Parameters Summary
POST /rawEvents/download/listFiles

The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Table 16-1 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. 

• sessionId (string)—The sessionId obtained via POST /auth/login. 

• productId (integer)—The product ID on which this request is being done/
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 295



Chapter 16 Raw Data Export
Download Files
Example Request/Response
This section includes a sample request and sample response.

Example Request
POST /rawEvents/download/listFiles HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 2376158762

}
Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
 "status": "OK",
 "fileList": [

{
"fileName": "2376158762_2019-05-08.zip",
"fileDate": "2019-05-08",
"compressedSizeKB": 275.28

}
{

"fileName": "2376158762_2019-05-07.zip",
"fileDate": "2019-05-07",
"compressedSizeKB": 327.14

}
 ]

}

Download Files
In order to download the data files, the file needs to be requested to the API which returns a secure URL from which the file 
can be downloaded.

POST /rawEvents/download/getDownloadUrl

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• fileList (array)—Array of JSON objects containing information about available files. 
These files can be requested for download.

Table 16-1 • Request Properties

Property Description
296 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide



Chapter 16 Raw Data Export
Download Files
The request and response are both JSON objects. The following is a summary of the properties inside the request and 
response objects.

Example Request/Response
This section includes a sample request and sample response.

Example Request
POST /rawEvents/download/getDownloadUrl HTTP/1.1
Host: api.revulytics.com
Content-Type: application/json
Accept: application/json

{
"user": "testuser@test.com",
"sessionId": "VSB8E2BzSC2eZSJm4QmTpA",
"productId": 2376158762,
"fileName": "2376158762_2019-05-08.zip"

}

Example Response
HTTP/1.1 200 OK
Content-Type: application/json

{
 "status":"OK",
 "downloadUrl":"https://analytics-evt.revulytics.com/download/CzyLGrtHXpDixrPlMItFCyZTCagLEy"

}

Table 16-2 • Request Properties

Property Description

Request JSON Object • user (string)—The username of your Usage Intelligence user account. 

• sessionId (string)—The sessionId obtained via POST /auth/login. 

• productId (integer)—The product ID on which this request is being done.

• fileName (string)—The filename of the file being requested to download

Response JSON Object • status (string)—Contains OK if successful or SYNTAX ERROR or AUTH ERROR.

• reason (string)—Present only if status is not OK. Contains error message (reason).

• downloadUrl (string)—The one-time URL used to download the zip file
Usage Intelligence Reporting API v2.1.0 Guide FUI-0210-APIUG01 297



Chapter 16 Raw Data Export
Download Files
298 FUI-0210-APIUG01 Usage Intelligence Reporting API v2.1.0 Guide


	Title Page
	Legal Information
	Contents

	Usage Intelligence Reporting API v2.1.0 Guide
	Product Support Resources
	Contact Us

	Quick Start Guide
	Authentication Method
	HTTPS Method
	Raw vs Formatted Results
	Example Request

	POST vs GET Requests
	When to Use GET
	When to Use POST
	Example Request

	Raw vs. Formatted Responses
	Requesting Formatted Reports
	Example Request

	Authentication
	Authenticating and Obtaining a Session ID
	Logging Out

	Metadata Queries
	Getting a List of Filter / Segmentation Properties
	Getting a List of Possible Property Values
	Getting Oldest Permitted Date

	Event Tracking Management
	Listing Event Categories and Names

	Generic Reports
	Generic Date-Range Reports
	Request/Response Parameters Summary
	Global Filters
	String-Based Filters
	Numeric Filters
	Date Range Filters
	Boolean Filters
	Special Filters
	Special Filter: licenseStatus
	Special Filter: os
	Special Filter: geography
	Special Filter: gpu
	Special Filters: optOut and backOff
	Special Filter: lifetimeEventUsage
	Special Filter: reachOutDeliveries

	<NULL> Values in Global Filters (Date-Range Reports)

	Segmentation and Levels (Date-Range Reports)
	Level Segments Format
	String-Based Segmentation Properties
	Numeric Segmentation Properties
	Boolean Segmentation Properties
	Special Segmentation Properties
	Special Segmentation Format: licenseStatus
	Special Segmentation Format: os
	Special Segmentation Format: geography
	Special Segmentation Format: gpu
	Special Segmentation Format: optOut and backOff

	<NULL> Values in Segmentation and Levels (Date-Range Reports)

	Results Format for Reports Using Date Splitting
	Full Example Request/Response of Daily Timeline Report with Segmentation
	Results Format for Reports Using Date Splitting with No Segmentation Levels

	Results Format for Reports Without Date Splitting
	Full Example Request/Response of Report with 2-Level Segmentation
	Results Format for Reports without Date Splitting and with No Segmentation Levels


	Generic Current Reports
	Request/Response Parameters Summary
	Global Filters
	String-Based Filters
	Numeric Filters
	Boolean Filters
	Date Range Filters
	Special Filters
	Special Filter: licenseStatus
	Special Filter: os
	Special Filter: geography
	Special Filter: gpu
	Special Filters: optOut and backOff
	Special Filter: lifetimeEventUsage
	Special Filter: reachOutDeliveries

	<NULL> Values in Global Filters (Current Reports)

	Segmentation and Levels (Current Reports)
	Level Segments Format
	String-Based Segmentation Properties
	Numeric Segmentation Properties
	Boolean Segmentation Properties
	Special Segmentation Properties
	Special Segmentation Format: licenseStatus
	Special Segmentation Format: os
	Special Segmentation Format: geography
	Special Segmentation Format: gpu
	Special Segmentation Format: optOut and backOff

	<NULL> Values in Segmentation and Levels (Current Reports)

	Results Format
	Full Example Request/Response of Daily Timeline Report with Segmentation
	Results Format for Reports with No Segmentation Levels



	User Engagement Histograms
	Request/Response Parameters Summary
	Global Filters
	String-Based Filters
	Numeric Filters
	Date Range Filters
	Boolean Filters
	Special Filters
	Special Filter: licenseStatus
	Special Filter: os
	Special Filter: geography
	Special Filter: gpu
	Special Filters: optOut and backOff
	Special Filter: lifetimeEventUsage
	Special Filter: reachOutDeliveries

	<NULL> Values in Global Filters

	Results Format

	Event Tracking Reports
	Lifetime Event Tracking Reports
	Data Table Report
	Request/Response Parameters Summary
	Global Filters
	String-Based Filters
	Numeric Filters
	Date Range Filters
	Boolean Filters
	Special Filters
	<NULL> Values for Global Filters

	Segmentation
	String-Based Segmentation Properties
	Numeric Segmentation Properties
	Boolean Segmentation Properties
	Special Segmentation Properties
	<NULL> Values for Segmentation

	Sorting
	Results Format
	Example Response with No Event Categorization and No Segmentation
	Example Response with Event Categorization and Segmentation by prodVersion


	Histogram Report
	Request/Response Parameters Summary
	Events Property
	lowerBounds and binUpperBounds Properties
	Results Summary
	Results Histograms


	Basic Event Tracking Reports
	Data Table Report
	Request/Response Parameters Summary
	Results Format

	Timeline Report
	Request/Response Parameters Summary
	Results Format


	Advanced Event Tracking Reports
	Event Usage Frequency Report
	Request/Response Parameters Summary
	Global Filters
	String-Based Filters
	Numeric Filters
	Date Range Filters
	Boolean Filters
	Special Filters
	<NULL> Values in Global Filters

	Data Segmentation
	String-Based Segmentation Properties
	Numeric Segmentation Properties
	Boolean Segmentation Properties
	Special Segmentation Properties
	<NULL> Values for Data Segmentation

	Events Property
	Results Format



	Churn-Related Reports
	Churn and Engagement Report
	Request/Response Parameters Summary
	Global Filters
	String-Based Filters
	Numeric Filters
	Date Range Filters
	Boolean Filters
	Special Filters
	Special Filter: licenseStatus
	Special Filter: os
	Special Filter: geography
	Special Filter: gpu
	Special Filters: optOut and backOff
	Special Filter: lifetimeEventUsage
	Special Filter: reachOutDeliveries

	<NULL> Values in Global Filters

	Segmentation
	Segmentation Based on Installation Period
	String-Based Segmentation Properties
	Numeric Segmentation Properties
	Boolean Segmentation Properties
	Special Segmentation Properties
	Special Segmentation Format: licenseStatus
	Special Segmentation Format: os
	Special Segmentation Format: geography
	Special Segmentation Format: gpu
	Special Segmentation Format: optOut and backOff

	<NULL> Values for Segmentation

	Results Format

	Runtime Activity Reports for Lost Installations
	Request/Response Parameters Summary
	Global Filters
	String-Based Filters
	Numeric Filters
	Date Range Filters
	Boolean Filters
	Special Filters
	Special Filter: licenseStatus
	Special Filter: os
	Special Filter: geography
	Special Filter: gpu
	Special Filters: optOut and backOff
	Special Filter: lifetimeEventUsage
	Special Filter: reachOutDeliveries

	<NULL> Values in Global Filters

	Results Format

	Churned User Activity Reports
	Data Table Report
	Request/Response Parameters Summary
	Global Filters
	String-Based Filters
	Numeric Filters
	Date Range Filters
	Boolean Filters
	Special Filters
	<NULL> Values in Global Filters

	Segmentation
	String-Based Segmentation Properties
	Numeric Segmentation Properties
	Boolean Segmentation Properties
	Special Segmentation Properties
	<NULL> Values for Segmentation

	Sorting
	Results Format

	Histogram Report
	Request/Response Parameters Summary
	Events Property
	lowerBounds and binUpperBounds Properties
	Results Summary
	Results Histograms



	License Key Registry Management
	Retrieving and Searching License Keys from the Key Registry
	Updating and Inserting New Keys in the Key Registry

	Custom Event Tracking
	Latest Data Preview
	Request/Response Parameters Summary
	Results Format

	Downloadable File Listing
	Request/Response Parameters Summary
	Example Request/Response

	Download Zipped CSV File
	Example Request/Response


	Exception Tracking
	Latest Data Preview
	Request/Response Parameters Summary
	Results Format

	Downloadable File Listing
	Request/Response Parameters Summary
	Example Request/Response

	Download Zipped CSV File
	Example Request/Response


	Client Profile Report
	Request/Response Parameters Summary
	retDailyData Property
	properties Property
	Current Data Properties
	Daily Data Properties

	Global Filters
	String-Based Filters
	Numeric Filters
	Date Range Filters
	Boolean Filters
	Special Filters
	Special Filter: licenseStatus
	Special Filter: os
	Special Filter: geography
	Special Filter: gpu
	Special Filters: optOut and backOff
	Special Filter: lifetimeEventUsage
	Special Filter: reachOutDeliveries

	<NULL> Values in Global Filters

	Results Format
	Example Request/Response

	Raw Data Export
	Downloadable File Listing
	Request/Response Parameters Summary
	Example Request/Response

	Download Files
	Example Request/Response



